
Planning and Optimization
A3. Getting to Know a Planner

Malte Helmert and Gabriele Röger

Universität Basel

September 23, 2024



Fast Downward and VAL 15-Puzzle Summary

Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints



Fast Downward and VAL 15-Puzzle Summary

Fast Downward and VAL



Fast Downward and VAL 15-Puzzle Summary

Getting to Know a Planner

We now play around a bit with a planner and its input:

look at problem formulation

run a planner (= planning system/planning algorithm)

validate plans found by the planner



Fast Downward and VAL 15-Puzzle Summary

Planner: Fast Downward

Fast Downward

We use the Fast Downward planner in this course

because we know it well (developed by our research group)

because it implements many search algorithms and heuristics

because it is the classical planner most commonly used
as a basis for other planners

⇝ https://www.fast-downward.org

https://www.fast-downward.org


Fast Downward and VAL 15-Puzzle Summary

Validator: VAL

VAL

We use the VAL plan validation tool (Fox, Howey & Long)
to independently verify that the plans we generate are correct.

very useful debugging tool

https://github.com/KCL-Planning/VAL

https://github.com/KCL-Planning/VAL


Fast Downward and VAL 15-Puzzle Summary

15-Puzzle



Fast Downward and VAL 15-Puzzle Summary

Illustrating Example: 15-Puzzle

9 2 12 7

5 6 14 13

3 11 1

15 4 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15



Fast Downward and VAL 15-Puzzle Summary

Solving the 15-Puzzle

Demo

$ cd demo

$ less tile/puzzle.pddl

$ less tile/puzzle01.pddl

$ ./fast-downward.py \

tile/puzzle.pddl tile/puzzle01.pddl \

--heuristic "h=ff()" \

--search "eager_greedy([h],preferred=[h])"

. . .

$ validate tile/puzzle.pddl tile/puzzle01.pddl \

sas_plan

. . .



Fast Downward and VAL 15-Puzzle Summary

Variation: Weighted 15-Puzzle

Weighted 15-Puzzle:

moving different tiles has different cost

cost of moving tile x = number of prime factors of x

Demo

$ cd demo

$ meld tile/puzzle.pddl tile/weight.pddl

$ meld tile/puzzle01.pddl tile/weight01.pddl

$ ./fast-downward.py \

tile/weight.pddl tile/weight01.pddl \

--heuristic "h=ff()" \

--search "eager_greedy([h],preferred=[h])"

. . .



Fast Downward and VAL 15-Puzzle Summary

Variation: Glued 15-Puzzle

Glued 15-Puzzle:

some tiles are glued in place and cannot be moved

Demo

$ cd demo

$ meld tile/puzzle.pddl tile/glued.pddl

$ meld tile/puzzle01.pddl tile/glued01.pddl

$ ./fast-downward.py \

tile/glued.pddl tile/glued01.pddl \

--heuristic "h=cg()" \

--search "eager_greedy([h],preferred=[h])"

. . .

Note: different heuristic used!



Fast Downward and VAL 15-Puzzle Summary

Variation: Cheating 15-Puzzle

Cheating 15-Puzzle:

Can remove tiles from puzzle frame (creating more blanks)
and reinsert tiles at any blank location.

Demo

$ cd demo

$ meld tile/puzzle.pddl tile/cheat.pddl

$ meld tile/puzzle01.pddl tile/cheat01.pddl

$ ./fast-downward.py \

tile/cheat.pddl tile/cheat01.pddl \

--heuristic "h=ff()" \

--search "eager_greedy([h],preferred=[h])"

. . .



Fast Downward and VAL 15-Puzzle Summary

Summary



Fast Downward and VAL 15-Puzzle Summary

Summary

We saw planning tasks modeled in the PDDL language.

We ran the Fast Downward planner and VAL plan validator.

We made some modifications to PDDL problem formulations
and checked the impact on the planner.


	Fast Downward and VAL
	

	15-Puzzle
	

	Summary
	


