
Planning and Optimization
A3. Getting to Know a Planner

Malte Helmert and Gabriele Röger

Universität Basel

September 23, 2024

M. Helmert, G. Röger (Universität Basel) Planning and Optimization September 23, 2024 1 / 15



Planning and Optimization
September 23, 2024 — A3. Getting to Know a Planner

A3.1 Fast Downward and VAL

A3.2 15-Puzzle

A3.3 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization September 23, 2024 2 / 15



Content of the Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Constraints

M. Helmert, G. Röger (Universität Basel) Planning and Optimization September 23, 2024 3 / 15



A3. Getting to Know a Planner Fast Downward and VAL

A3.1 Fast Downward and VAL

M. Helmert, G. Röger (Universität Basel) Planning and Optimization September 23, 2024 4 / 15



A3. Getting to Know a Planner Fast Downward and VAL

Getting to Know a Planner

We now play around a bit with a planner and its input:

▶ look at problem formulation

▶ run a planner (= planning system/planning algorithm)

▶ validate plans found by the planner

M. Helmert, G. Röger (Universität Basel) Planning and Optimization September 23, 2024 5 / 15



A3. Getting to Know a Planner Fast Downward and VAL

Planner: Fast Downward

Fast Downward
We use the Fast Downward planner in this course

▶ because we know it well (developed by our research group)

▶ because it implements many search algorithms and heuristics

▶ because it is the classical planner most commonly used
as a basis for other planners

⇝ https://www.fast-downward.org

M. Helmert, G. Röger (Universität Basel) Planning and Optimization September 23, 2024 6 / 15

https://www.fast-downward.org


A3. Getting to Know a Planner Fast Downward and VAL

Validator: VAL

VAL

We use the VAL plan validation tool (Fox, Howey & Long)
to independently verify that the plans we generate are correct.

▶ very useful debugging tool

▶ https://github.com/KCL-Planning/VAL

M. Helmert, G. Röger (Universität Basel) Planning and Optimization September 23, 2024 7 / 15

https://github.com/KCL-Planning/VAL


A3. Getting to Know a Planner 15-Puzzle

A3.2 15-Puzzle

M. Helmert, G. Röger (Universität Basel) Planning and Optimization September 23, 2024 8 / 15



A3. Getting to Know a Planner 15-Puzzle

Illustrating Example: 15-Puzzle

9 2 12 7

5 6 14 13

3 11 1

15 4 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

M. Helmert, G. Röger (Universität Basel) Planning and Optimization September 23, 2024 9 / 15



A3. Getting to Know a Planner 15-Puzzle

Solving the 15-Puzzle

Demo
$ cd demo

$ less tile/puzzle.pddl

$ less tile/puzzle01.pddl

$ ./fast-downward.py \

tile/puzzle.pddl tile/puzzle01.pddl \

--heuristic "h=ff()" \

--search "eager_greedy([h],preferred=[h])"

. . .

$ validate tile/puzzle.pddl tile/puzzle01.pddl \

sas_plan

. . .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization September 23, 2024 10 / 15



A3. Getting to Know a Planner 15-Puzzle

Variation: Weighted 15-Puzzle

Weighted 15-Puzzle:

▶ moving different tiles has different cost

▶ cost of moving tile x = number of prime factors of x

Demo
$ cd demo

$ meld tile/puzzle.pddl tile/weight.pddl

$ meld tile/puzzle01.pddl tile/weight01.pddl

$ ./fast-downward.py \

tile/weight.pddl tile/weight01.pddl \

--heuristic "h=ff()" \

--search "eager_greedy([h],preferred=[h])"

. . .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization September 23, 2024 11 / 15



A3. Getting to Know a Planner 15-Puzzle

Variation: Glued 15-Puzzle

Glued 15-Puzzle:

▶ some tiles are glued in place and cannot be moved

Demo
$ cd demo

$ meld tile/puzzle.pddl tile/glued.pddl

$ meld tile/puzzle01.pddl tile/glued01.pddl

$ ./fast-downward.py \

tile/glued.pddl tile/glued01.pddl \

--heuristic "h=cg()" \

--search "eager_greedy([h],preferred=[h])"

. . .

Note: different heuristic used!

M. Helmert, G. Röger (Universität Basel) Planning and Optimization September 23, 2024 12 / 15



A3. Getting to Know a Planner 15-Puzzle

Variation: Cheating 15-Puzzle

Cheating 15-Puzzle:

▶ Can remove tiles from puzzle frame (creating more blanks)
and reinsert tiles at any blank location.

Demo
$ cd demo

$ meld tile/puzzle.pddl tile/cheat.pddl

$ meld tile/puzzle01.pddl tile/cheat01.pddl

$ ./fast-downward.py \

tile/cheat.pddl tile/cheat01.pddl \

--heuristic "h=ff()" \

--search "eager_greedy([h],preferred=[h])"

. . .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization September 23, 2024 13 / 15



A3. Getting to Know a Planner Summary

A3.3 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization September 23, 2024 14 / 15



A3. Getting to Know a Planner Summary

Summary

▶ We saw planning tasks modeled in the PDDL language.

▶ We ran the Fast Downward planner and VAL plan validator.

▶ We made some modifications to PDDL problem formulations
and checked the impact on the planner.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization September 23, 2024 15 / 15


	Fast Downward and VAL
	

	15-Puzzle
	

	Summary
	


