Planning and Optimization A2. What is Planning?

Malte Helmert and Gabriele Röger

Universität Basel

September 18, 2024

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-28-0) September 18, 2024 1 / 29

Planning and Optimization September 18, 2024 — A2. What is Planning?

A2.1 [Planning](#page-4-0)

A2.2 [Planning Task Examples](#page-19-0)

A2.3 [How Hard is Planning?](#page-24-0)

A2.4 [Summary](#page-27-0)

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) September 18, 2024 2/29

Content of the Course

Prelude (Chapters A1–A3): very high-level intro to planning

- ▶ our goal: give you a little feeling what planning is about
- ▶ preface to the actual course
- \rightarrow main course content (beginning with Chapter B1) will be mathematically formal and rigorous
- ▶ You can ignore the prelude when preparing for the exam.

A2.1 [Planning](#page-4-0)

General Problem Solving

Wikipedia: General Problem Solver

General Problem Solver (GPS) was a computer program created in 1959 by Herbert Simon, J.C. Shaw, and Allen Newell intended to work as a universal problem solver machine.

Any formalized symbolic problem can be solved, in principle, by GPS. $[...]$

GPS was the first computer program which separated its knowledge of problems (rules represented as input data) from its strategy of how to solve problems (a generic solver engine).

 \rightarrow these days called "domain-independent automated planning" \rightarrow this is what the course is about

So What is Domain-Independent Automated Planning?

Automated Planning (Pithy Definition) "Planning is the art and practice of thinking before acting." — Patrik Haslum

Automated Planning (More Technical Definition) "Selecting a goal-leading course of action based on a high-level description of the world."

— Jörg Hoffmann

Domain-Independence of Automated Planning Create one planning algorithm that performs sufficiently well on many application domains (including future ones).

General Perspective on Planning

Example: Earth Observation

▶ satellite takes images of patches on Earth ▶ use weather forecast to optimize probability of high-quality images

Example: Termes

Harvard TERMES robots, based on termites

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) September 18, 2024 10 / 29

Example: Cybersecurity

CALDERA automated adversary emulation system

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) September 18, 2024 11 / 29

Example: Intelligent Greenhouse

photo © LemnaTec GmbH

Example: Red-finned Blue-eye

Picture by Iadine Chadès

- \triangleright red-finned blue-eye population threatened by gambusia
- springs connected probabilistically during rain season
- find strategy to save red-finned blue-eye from extinction

Classical Planning

Model-based vs. Data-driven Approaches

Model-based approaches know the "inner workings" of the world \rightsquigarrow reasoning

Data-driven approaches rely only on collected data from a black-box world \rightsquigarrow learning

We focus on model-based approaches.

Planning Tasks

input to a planning algorithm: planning task

- \blacktriangleright initial state of the world
- ▶ actions that change the state
- \blacktriangleright goal to be achieved

output of a planning algorithm:

- \triangleright plan: sequence of actions taking initial state to a goal state
- \triangleright or confirmation that no plan exists

\rightarrow formal definitions later in the course

The Planning Research Landscape

- ▶ one of the major subfields of Artificial Intelligence (AI)
- ▶ represented at major AI conferences (IJCAI, AAAI, ECAI)
- ▶ annual specialized conference ICAPS (\approx 250 participants)
- ▶ major journals: general AI journals (AIJ, JAIR)

Classical Planning

This course covers classical planning:

- ▶ offline (static)
- \blacktriangleright discrete
- \blacktriangleright deterministic
- \blacktriangleright fully observable
- \blacktriangleright single-agent
- \triangleright sequential (plans are action sequences)
- ▶ domain-independent

This is just one facet of planning.

Many others are studied in AI. Algorithmic ideas often (but not always) translate well to more general problems.

More General Planning Topics

More general kinds of planning include:

- ▶ offline: online planning; planning and execution
- \triangleright discrete: continuous planning (e.g., real-time/hybrid systems)
- ▶ deterministie: FOND planning; probabilistic planning
- ▶ single-agent: multi-agent planning; general game playing; game-theoretic planning
- ▶ fully observable: POND planning; conformant planning
- ▶ sequential: e.g., temporal planning

Domain-dependent planning problems in AI include:

- ▶ pathfinding, including grid-based and multi-agent (MAPF)
- \triangleright continuous motion planning

A2. What is Planning? [Planning Task Examples](#page-19-0)

A2.2 [Planning Task Examples](#page-19-0)

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) September 18, 2024 20 / 29

Example: The Seven Bridges of Königsberg

image credits: Bogdan Giușcă (public domain)

Demo \$ ls demo/koenigsberg

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) September 18, 2024 21 / 29

Example: Intelligent Greenhouse

photo © LemnaTec GmbH

Demo \$ ls demo/ipc/scanalyzer-08-strips

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) September 18, 2024 22 / 29

Example: FreeCell

image credits: GNOME Project (GNU General Public License)

Demo Material

\$ ls demo/ipc/freecell

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) September 18, 2024 23 / 29

Many More Examples

Demo

. . .

```
$ ls demo/ipc
agricola-opt18-strips
agricola-sat18-strips
airport
airport-adl
assembly
barman-mco14-strips
barman-opt11-strips
barman-opt14-strips
```
 \rightsquigarrow (most) benchmarks of planning competitions IPC since 1998

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) September 18, 2024 24 / 29

A2.3 [How Hard is Planning?](#page-24-0)

Classical Planning as State-Space Search

classical planning as state-space search:

\rightarrow much more on this later in the course

M. Helmert, G. Röger (Universität Basel) [Planning and Optimization](#page-0-0) September 18, 2024 26 / 29

Is Planning Difficult?

Classical planning is computationally challenging:

- \triangleright number of states grows exponentially with description size when using (propositional) logic-based representations
- ▶ provably hard (PSPACE-complete)
- \rightsquigarrow we prove this later in the course

problem sizes:

- ▶ Seven Bridges of Königsberg: 64 reachable states
- Rubik's Cube: $4.325 \cdot 10^{19}$ reachable states \rightsquigarrow consider 2 billion/second \rightsquigarrow 1 billion years
- ightharpoonup standard benchmarks: some with $> 10^{200}$ reachable states

A2.4 [Summary](#page-27-0)

Summary

- \blacktriangleright planning $=$ thinking before acting
- ▶ major subarea of Artificial Intelligence
- \triangleright domain-independent planning $=$ general problem solving
- \blacktriangleright classical planning = the "easy case" (deterministic, fully observable etc.)
- \blacktriangleright still hard enough! \rightarrow PSPACE-complete because of huge number of states
- ▶ often solved by state-space search
- ▶ number of states grows exponentially with input size