Discrete Mathematics in Computer Science D5. Syntax and Semantics of Predicate Logic

Malte Helmert, Gabriele Röger

University of Basel

December 9/11/16, 2024

Syntax of Predicate Logic

Limits of Propositional Logic

Cannot be expressed well in propositional logic:

- "Everyone who does the exercises passes the exam."
- "If someone with administrator privileges presses 'delete', all data is gone."
- "Everyone has a mother."
- "If someone is the father of some person, the person is his child."

Limits of Propositional Logic

Cannot be expressed well in propositional logic:

- "Everyone who does the exercises passes the exam."
- "If someone with administrator privileges presses 'delete', all data is gone."
- "Everyone has a mother."
- "If someone is the father of some person, the person is his child."

▷ need more expressive logic
 → predicate logic (a.k.a. first-order logic)

German: Prädikatenlogik (erster Stufe)

Syntax: Building Blocks

- Signatures define allowed symbols.
 analogy: atom set A in propositional logic
- Terms are associated with objects by the semantics. no analogy in propositional logic
- Formulas are associated with truth values (true or false) by the semantics.
 analogy: formulas in propositional logic

German: Signatur, Term, Formel

Signatures: Definition

Definition (Signature)

A signature (of predicate logic) is a 4-tuple $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ consisting of the following four disjoint sets:

- lacksquare a finite or countable set ${\cal V}$ of variable symbols
- lacksquare a finite or countable set $\mathcal C$ of constant symbols
- lacksquare a finite or countable set ${\mathcal F}$ of function symbols
- a finite or countable set P of predicate symbols (or relation symbols)

Every function symbol $f \in \mathcal{F}$ and predicate symbol $P \in \mathcal{P}$ has an associated arity $ar(f), ar(P) \in \mathbb{N}_1$ (number of arguments).

German: Variablen-, Konstanten-, Funktions-, Prädikat- und Relationssymbole; Stelligkeit

Signatures: Terminology and Conventions

terminology:

- k-ary (function or predicate) symbol: symbol s with arity ar(s) = k.
- also: unary, binary, ternary

German: k-stellig, unär, binär, ternär

conventions (in this course):

- variable symbols written in *italics*, other symbols upright.
- predicate symbols begin with capital letter, other symbols with lower-case letters

Signatures: Examples

Example: Arithmetic

- $\mathbf{V} = \{x, y, z, x_1, x_2, x_3, \dots\}$
- $\mathcal{C} = \{\text{zero}, \text{one}\}$
- $ightharpoonup \mathcal{F} = \{\mathsf{sum}, \mathsf{product}\}$
- $\mathbf{P} = \{ Positive, Square Number \}$

ar(sum) = ar(product) = 2, ar(Positive) = ar(SquareNumber) = 1

Signatures: Examples

Example: Genealogy

- $\mathbf{v} = \{x, y, z, x_1, x_2, x_3, \dots\}$
- lacktriangledown $\mathcal{C} = \{\text{roger-federer}, \text{lisa-simpson}\}$
- $\mathcal{F} = \emptyset$
- $ightharpoonup \mathcal{P} = \{\mathsf{Female}, \mathsf{Male}, \mathsf{Parent}\}$

$$ar(Female) = ar(Male) = 1$$
, $ar(Parent) = 2$

Terms: Definition

Definition (Term)

Let $S = \langle V, C, F, P \rangle$ be a signature.

A term (over $\ensuremath{\mathcal{S}})$ is inductively constructed according to the following rules:

- Every variable symbol $\mathbf{v} \in \mathcal{V}$ is a term.
- Every constant symbol $\mathbf{c} \in \mathcal{C}$ is a term.
- If $t_1, ..., t_k$ are terms and $f \in \mathcal{F}$ is a function symbol with arity k, then $f(t_1, ..., t_k)$ is a term.

German: Term

Terms: Definition

Definition (Term)

Let $S = \langle V, C, F, P \rangle$ be a signature.

A term (over \mathcal{S}) is inductively constructed according to the following rules:

- Every variable symbol $\mathbf{v} \in \mathcal{V}$ is a term.
- Every constant symbol $\mathbf{c} \in \mathcal{C}$ is a term.
- If $t_1, ..., t_k$ are terms and $f \in \mathcal{F}$ is a function symbol with arity k, then $f(t_1, ..., t_k)$ is a term.

German: Term

examples:

- X4
- lisa-simpson
- \blacksquare sum(x_3 , product(one, x_5))

Formulas: Definition

Definition (Formula)

For a signature $S = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ the set of predicate logic formulas (over S) is inductively defined as follows:

- If $t_1, ..., t_k$ are terms (over S) and $P \in \mathcal{P}$ is a k-ary predicate symbol, then the atomic formula (or the atom) $P(t_1, ..., t_k)$ is a formula over S.
- If t_1 and t_2 are terms (over S), then the identity ($t_1 = t_2$) is a formula over S.
- If $x \in \mathcal{V}$ is a variable symbol and φ a formula over \mathcal{S} , then the universal quantification $\forall x \varphi$ and the existential quantification $\exists x \varphi$ are formulas over \mathcal{S} .

German: atomare Formel, Atom, Identität, Allquantifizierung, Existenzquantifizierung

Formulas: Definition

Definition (Formula)

For a signature $S = \langle V, C, F, P \rangle$ the set of predicate logic formulas (over S) is inductively defined as follows:

. . .

- If φ is a formula over S, then so is its negation $\neg \varphi$.
- If φ and ψ are formulas over \mathcal{S} , then so are the conjunction $(\varphi \wedge \psi)$ and the disjunction $(\varphi \vee \psi)$.

German: Negation, Konjunktion, Disjunktion

Formulas: Examples

Examples: Arithmetic and Genealogy

- Positive(x_2)
- $\forall x (\neg \mathsf{SquareNumber}(x) \lor \mathsf{Positive}(x))$
- $\exists x_3 (\mathsf{SquareNumber}(x_3) \land \neg \mathsf{Positive}(x_3))$
- $\forall x (\mathsf{sum}(x, x) = \mathsf{product}(x, \mathsf{one}))$
- $\forall x \exists y \, (\mathsf{sum}(x,y) = \mathsf{zero})$
- $\forall x \exists y (Parent(y, x) \land Female(y))$

Terminology: The symbols \forall and \exists are called quantifiers.

German: Quantoren

Abbreviations and Placement of Parentheses by Convention

abbreviations:

- $(\varphi \to \psi)$ is an abbreviation for $(\neg \varphi \lor \psi)$.
- $(\varphi \leftrightarrow \psi)$ is an abbreviation for $((\varphi \to \psi) \land (\psi \to \varphi))$.
- Sequences of the same quantifier can be abbreviated. For example:

 - $\exists x \exists y \exists z \varphi \leadsto \exists xyz \varphi$

Abbreviations and Placement of Parentheses by Convention

abbreviations:

- $(\varphi \to \psi)$ is an abbreviation for $(\neg \varphi \lor \psi)$.
- $(\varphi \leftrightarrow \psi)$ is an abbreviation for $((\varphi \to \psi) \land (\psi \to \varphi))$.
- Sequences of the same quantifier can be abbreviated. For example:

 - $\blacksquare \exists x \exists y \exists z \varphi \rightsquigarrow \exists xyz \varphi$

placement of parentheses by convention:

- analogous to propositional logic
- lacktriangle quantifiers \forall and \exists bind more strongly than anything else.
- example: $\forall x P(x) \rightarrow Q(x)$ corresponds to $(\forall x P(x) \rightarrow Q(x))$, not $\forall x (P(x) \rightarrow Q(x))$.

Exercise

$$\begin{split} \mathcal{S} &= \langle \{x,y,z\}, \{c\}, \{f,g,h\}, \{Q,R,S\} \rangle \text{ with } \\ \textit{ar}(f) &= 3, \textit{ar}(g) = \textit{ar}(h) = 1, \textit{ar}(Q) = 2, \textit{ar}(R) = \textit{ar}(S) = 1 \end{split}$$

- f(x,y)
- (g(x) = R(y))
- (g(x) = f(y, c, h(x)))
- $(R(x) \land \forall x S(x))$
- $\lor \forall c Q(c, x)$
- $(\forall x \exists y (g(x) = y) \lor (h(x) = c))$

Which expressions are syntactically correct formulas or terms for S? What kind of term/formula?

Questions

Questions?

Semantics of Predicate Logic

Semantics: Motivation

- interpretations in propositional logic: truth assignments for the propositional variables
- There are no propositional variables in predicate logic.
- instead: interpretation determines meaning of the constant, function and predicate symbols.
- meaning of variable symbols not determined by interpretation but by separate variable assignment

Interpretations and Variable Assignments

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

Definition (Interpretation, Variable Assignment)

An interpretation (for S) is a pair $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ of:

- a non-empty set U called the universe and
- a function .¹ that assigns a meaning to the constant, function, and predicate symbols:
 - lacksquare $c^{\mathcal{I}} \in U$ for constant symbols $c \in \mathcal{C}$
 - $f^{\mathcal{I}}: U^k \to U$ for k-ary function symbols $f \in \mathcal{F}$
 - $ightharpoonup \mathsf{P}^\mathcal{I} \subseteq U^k$ for *k*-ary predicate symbols $\mathsf{P} \in \mathcal{P}$

A variable assignment (for S and universe U) is a function $\alpha : \mathcal{V} \to U$.

German: Interpretation, Universum (or Grundmenge), Variablenzuweisung

Interpretations and Variable Assignments: Example

Example

```
signature: \mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle with \mathcal{V} = \{x, y, z\}, \mathcal{C} = \{\text{zero, one}\}, \mathcal{F} = \{\text{sum, product}\}, \mathcal{P} = \{\text{SquareNumber}\} ar(\text{sum}) = ar(\text{product}) = 2, ar(\text{SquareNumber}) = 1
```

Interpretations and Variable Assignments: Example

Example

```
signature: \mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle with \mathcal{V} = \{x, y, z\}, \mathcal{C} = \{\text{zero, one}\}, \mathcal{F} = \{\text{sum, product}\}, \mathcal{P} = \{\text{SquareNumber}\} ar(\text{sum}) = ar(\text{product}) = 2, ar(\text{SquareNumber}) = 1
```

$$\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$$
 with

- $U = \{u_0, u_1, u_2, u_3, u_4, u_5, u_6\}$
- \blacksquare zero $^{\mathcal{I}} = u_0$
- \bullet one $\mathcal{I} = u_1$
- $sum^{\mathcal{I}}(u_i, u_j) = u_{(i+j) \mod 7}$ for all $i, j \in \{0, ..., 6\}$
- lacksquare product $\mathcal{I}(u_i, u_j) = u_{(i \cdot j) \mod 7}$ for all $i, j \in \{0, \dots, 6\}$
- SquareNumber $^{\mathcal{I}} = \{u_0, u_1, u_2, u_4\}$

$$\alpha = \{x \mapsto u_5, y \mapsto u_5, z \mapsto u_0\}$$

Semantics: Informally

```
Example: (\forall x (\mathsf{Block}(x) \to \mathsf{Red}(x)) \land \mathsf{Block}(a)) "For all objects x: if x is a block, then x is red. Also, the object called a is a block."
```

- Terms are interpreted as objects.
- Unary predicates denote properties of objects (to be a block, to be red, to be a square number, ...).
- General predicates denote relations between objects (to be someone's child, to have a common divisor, ...).
- Universally quantified formulas ("∀") are true if they hold for every object in the universe.
- Existentially quantified formulas ("∃") are true if they hold for at least one object in the universe.

Interpretations of Terms

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

Definition (Interpretation of a Term)

Let $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ be an interpretation for \mathcal{S} , and let α be a variable assignment for \mathcal{S} and universe U.

Let t be a term over S.

The interpretation of t under \mathcal{I} and α , written as $t^{\mathcal{I},\alpha}$, is the element of the universe U defined as follows:

- If t = x with $x \in \mathcal{V}$ (t is a variable term): $x^{\mathcal{I},\alpha} = \alpha(x)$
- If t = c with $c \in C$ (t is a constant term): $c^{\mathcal{I},\alpha} = c^{\mathcal{I}}$
- If $t = f(t_1, ..., t_k)$ (t is a function term): $f(t_1, ..., t_k)^{\mathcal{I}, \alpha} = f^{\mathcal{I}}(t_1^{\mathcal{I}, \alpha}, ..., t_k^{\mathcal{I}, \alpha})$

Interpretations of Terms: Example

Example

```
signature: \mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle with \mathcal{V} = \{x, y, z\}, \mathcal{C} = \{\text{zero, one}\}, \mathcal{F} = \{\text{sum, product}\}, ar(\text{sum}) = ar(\text{product}) = 2
```

Interpretations of Terms: Example

Example

signature:
$$\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$$
 with $\mathcal{V} = \{x, y, z\}$, $\mathcal{C} = \{\text{zero, one}\}$, $\mathcal{F} = \{\text{sum, product}\}$, $ar(\text{sum}) = ar(\text{product}) = 2$

$$\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$$
 with

- $U = \{u_0, u_1, u_2, u_3, u_4, u_5, u_6\}$
- \blacksquare zero^{\mathcal{I}} = u_0
- lacksquare one $^{\mathcal{I}}=u_1$
- \blacksquare sum^{\mathcal{I}} $(u_i, u_j) = u_{(i+j) \bmod 7}$ for all $i, j \in \{0, \dots, 6\}$
- lacksquare product $\mathcal{I}(u_i, u_j) = u_{(i \cdot j) \mod 7}$ for all $i, j \in \{0, \dots, 6\}$

$$\alpha = \{x \mapsto u_5, y \mapsto u_5, z \mapsto u_0\}$$

Interpretations of Terms: Example (ctd.)

Example (ctd.)

 $\quad \blacksquare \ \operatorname{zero}^{\mathcal{I},\alpha} =$

 $\mathbf{v}^{\mathcal{I},\alpha} =$

 \blacksquare sum $(x,y)^{\mathcal{I},\alpha}=$

■ product(one, sum(x, zero)) $^{\mathcal{I},\alpha}$ =

Semantics of Predicate Logic Formulas

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

Definition (Formula is Satisfied or True)

Let $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ be an interpretation for \mathcal{S} , and let α be a variable assignment for \mathcal{S} and universe U. We say that \mathcal{I} and α satisfy a predicate logic formula φ (also: φ is true under \mathcal{I} and α), written: $\mathcal{I}, \alpha \models \varphi$, according to the following inductive rules:

$$\begin{split} \mathcal{I}, \alpha &\models \mathsf{P}(t_1, \dots, t_k) & \text{ iff } \langle t_1^{\mathcal{I}, \alpha}, \dots, t_k^{\mathcal{I}, \alpha} \rangle \in \mathsf{P}^{\mathcal{I}} \\ \mathcal{I}, \alpha &\models (t_1 = t_2) & \text{ iff } t_1^{\mathcal{I}, \alpha} = t_2^{\mathcal{I}, \alpha} \\ \mathcal{I}, \alpha &\models \neg \varphi & \text{ iff } \mathcal{I}, \alpha \not\models \varphi \\ \mathcal{I}, \alpha &\models (\varphi \land \psi) & \text{ iff } \mathcal{I}, \alpha \models \varphi \text{ and } \mathcal{I}, \alpha \models \psi \\ \mathcal{I}, \alpha &\models (\varphi \lor \psi) & \text{ iff } \mathcal{I}, \alpha \models \varphi \text{ or } \mathcal{I}, \alpha \models \psi \\ & \dots \end{split}$$

German: \mathcal{I} und α erfüllen φ (also: φ ist wahr unter \mathcal{I} und α)

Semantics of Predicate Logic Formulas

Let $S = \langle V, C, F, P \rangle$ be a signature.

Definition (Formula is Satisfied or True)

. .

$$\begin{split} \mathcal{I}, \alpha &\models \forall x \varphi \quad \text{iff } \mathcal{I}, \alpha[x := u] \models \varphi \text{ for all } u \in U \\ \mathcal{I}, \alpha &\models \exists x \varphi \quad \text{iff } \mathcal{I}, \alpha[x := u] \models \varphi \text{ for at least one } u \in U \end{split}$$

where $\alpha[x := u]$ is the same variable assignment as α , except that it maps variable x to the value u. Formally:

$$(\alpha[x := u])(z) = \begin{cases} u & \text{if } z = x \\ \alpha(z) & \text{if } z \neq x \end{cases}$$

Semantics: Example

Example

```
signature: \mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle with \mathcal{V} = \{x, y, z\}, \mathcal{C} = \{a, b\}, \mathcal{F} = \emptyset, \mathcal{P} = \{Block, Red\}, ar(Block) = ar(Red) = 1.
```

Semantics: Example

Example

signature:
$$\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$$
 with $\mathcal{V} = \{x, y, z\}$, $\mathcal{C} = \{\mathsf{a}, \mathsf{b}\}$, $\mathcal{F} = \emptyset$, $\mathcal{P} = \{\mathsf{Block}, \mathsf{Red}\}$, $\mathit{ar}(\mathsf{Block}) = \mathit{ar}(\mathsf{Red}) = 1$.

$$\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$$
 with

- $U = \{u_1, u_2, u_3, u_4, u_5\}$
- lacksquare $\mathsf{a}^\mathcal{I} = \mathit{u}_1$
- lacksquare $b^{\mathcal{I}} = u_3$
- $\blacksquare \mathsf{Block}^{\mathcal{I}} = \{u_1, u_2\}$
- $\blacksquare \mathsf{Red}^{\mathcal{I}} = \{u_1, u_2, u_3, u_5\}$

$$\alpha = \{x \mapsto u_1, y \mapsto u_2, z \mapsto u_1\}$$

Semantics: Example (ctd.)

Example (ctd.)

Questions:

- \mathcal{I} , $\alpha \models (\mathsf{Block}(\mathsf{b}) \vee \neg \mathsf{Block}(\mathsf{b}))$?
- $\mathcal{I}, \alpha \models (\mathsf{Block}(x) \rightarrow (\mathsf{Block}(x) \lor \neg \mathsf{Block}(y)))$?
- $\mathcal{I}, \alpha \models (\mathsf{Block}(\mathsf{a}) \land \mathsf{Block}(\mathsf{b}))$?
- $\mathcal{I}, \alpha \models \forall x (\mathsf{Block}(x) \to \mathsf{Red}(x))$?

Questions

Questions?

Summary

- Predicate logic is more expressive than propositional logic and allows statements over objects and their properties.
- Objects are described by terms that are built from variable, constant and function symbols.
- Properties and relations are described by formulas that are built from predicates, quantifiers and the usual logical operators.