Discrete Mathematics in Computer Science D4. Inference

Malte Helmert, Gabriele Röger

University of Basel

December 9, 2024

Inference Rules and Calculi

Inference: Motivation

- up to now: proof of logical consequence with semantic arguments
- no general algorithm
- solution: produce formulas that are logical consequences of given formulas with syntactic inference rules
- advantage: mechanical method that can easily be implemented as an algorithm

Inference Rules

Inference rules have the form

$$\frac{\varphi_1,\ldots,\varphi_k}{\psi}$$
.

- Meaning: "Every model of $\varphi_1, \ldots, \varphi_k$ is a model of ψ ."
- An axiom is an inference rule with k=0.
- A set of inference rules is called a calculus or proof system.

German: Inferenzregel, Axiom, (der) Kalkül, Beweissystem

Some Inference Rules for Propositional Logic

Derivation

Definition (Derivation)

A derivation or proof of a formula φ from a knowledge base KB is a sequence of formulas ψ_1, \ldots, ψ_k with

- $\psi_k = \varphi$ and
- for all $i \in \{1, ..., k\}$:
 - $\psi_i \in \mathsf{KB}$, or
 - ψ_i is the result of the application of an inference rule to elements from $\{\psi_1, \dots, \psi_{i-1}\}.$

German: Ableitung, Beweis

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

Task: Find derivation of $(S \land R)$ from KB.

P (KB)

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

- P (KB)
- $2 (P \rightarrow Q) (KB)$

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

- P (KB)
- Q (1, 2, Modus ponens)

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

- P (KB)
- Q (1, 2, Modus ponens)

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

- P (KB)
- $(P \rightarrow Q)$ (KB)
- Q (1, 2, Modus ponens)
- $(P \rightarrow R)$ (KB)
- R (1, 4, Modus ponens)

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

- P (KB)
- Q (1, 2, Modus ponens)
- $(P \rightarrow R)$ (KB)
- R (1, 4, Modus ponens)

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

- P (KB)
- $(P \rightarrow Q)$ (KB)
- \bigcirc Q (1, 2, Modus ponens)
- R (1, 4, Modus ponens)
- \bigcirc $(Q \land R)$ (3, 5, \land -introduction)
- $((Q \land R) \rightarrow S)$ (KB)

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

- P (KB)
- $(P \rightarrow Q)$ (KB)
- \bigcirc Q (1, 2, Modus ponens)
- $(P \rightarrow R)$ (KB)
- R (1, 4, Modus ponens)
- \bigcirc ($Q \land R$) (3, 5, \land -introduction)
- \bigcirc $((Q \land R) \rightarrow S)$ (KB)
- § S (6, 7, Modus ponens)

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

- P (KB)
- $(P \rightarrow Q)$ (KB)
- Q (1, 2, Modus ponens)
- R (1, 4, Modus ponens)
- \bigcirc $(Q \land R)$ $(3, 5, \land -introduction)$
- \bigcirc $((Q \land R) \rightarrow S)$ (KB)
- S (6, 7, Modus ponens)
- $(S \land R)$ (8, 5, \land -introduction)

Correctness and Completeness

Definition (Correctness and Completeness of a Calculus)

We write $KB \vdash_C \varphi$ if there is a derivation of φ from KB in calculus C.

(If calculus C is clear from context, also only $KB \vdash \varphi$.)

A calculus C is correct if for all KB and φ KB $\vdash_C \varphi$ implies KB $\models_{\mathcal{C}} \varphi$.

A calculus C is complete if for all KB and φ KB $\models \varphi$ implies KB $\vdash_C \varphi$.

Correctness and Completeness

Definition (Correctness and Completeness of a Calculus)

We write $KB \vdash_C \varphi$ if there is a derivation of φ from KB in calculus C.

(If calculus C is clear from context, also only $KB \vdash \varphi$.)

A calculus C is correct if for all KB and φ KB $\vdash_C \varphi$ implies KB \models_{φ} .

A calculus C is complete if for all KB and φ KB $\models \varphi$ implies KB $\vdash_C \varphi$.

Consider calculus C, consisting of the derivation rules seen earlier.

Question: Is *C* correct? Question: Is *C* complete?

German: korrekt, vollständig

Questions

Questions?

Summary

Summary (Consequence and Inference)

- knowledge base: set of formulas describing given information; satisfiable, valid etc. used like for individual formulas
- logical consequence KB $\models \varphi$ means that φ is true whenever (= in all models where) KB is true
- A logical consequence KB $\models \varphi$ allows to conclude that KB implies φ based on the semantics.
- A correct calculus supports such conclusions on the basis of purely syntactical derivations $KB \vdash \varphi$.

Further Topics

There are many aspects of propositional logic that we do not cover in this course.

- resolution: a commonly used proof system for formulas in CNF
- other proof systems, for example tableaux proofs
- algorithms for model construction, such as the Davis-Putnam-Logemann-Loveland (DPLL) algorithm.

→ Foundations of AI course