Discrete Mathematics in Computer Science D4. Inference

Malte Helmert, Gabriele Röger

University of Basel

December 9, 2024

Discrete Mathematics in Computer Science December 9, 2024 — D4. Inference

D4.1 Inference Rules and Calculi

D4.2 Summary

D4.1 Inference Rules and Calculi

D4. Inference Rules and Calculi

Inference: Motivation

- up to now: proof of logical consequence with semantic arguments
- no general algorithm
- solution: produce formulas that are logical consequences of given formulas with syntactic inference rules
- advantage: mechanical method that can easily be implemented as an algorithm

D4. Inference Rules and Calculi

Inference Rules

Inference rules have the form

$$\frac{\varphi_1,\ldots,\varphi_k}{\psi}.$$

- ▶ Meaning: "Every model of $\varphi_1, \ldots, \varphi_k$ is a model of ψ ."
- An axiom is an inference rule with k=0.
- A set of inference rules is called a calculus or proof system.

German: Inferenzregel, Axiom, (der) Kalkül, Beweissystem

Some Inference Rules for Propositional Logic

$$\frac{\varphi, \ (\varphi \to \psi)}{\psi}$$
 Modus tollens
$$\frac{\neg \psi, \ (\varphi \to \psi)}{\neg \varphi}$$

$$\wedge \text{-elimination} \qquad \frac{(\varphi \land \psi)}{\varphi} \qquad \frac{(\varphi \land \psi)}{\psi}$$

$$\wedge \text{-introduction} \qquad \frac{\varphi, \ \psi}{(\varphi \land \psi)}$$

$$\vee \text{-introduction} \qquad \frac{\varphi}{(\varphi \lor \psi)}$$

$$\wedge \text{-elimination} \qquad \frac{(\varphi \leftrightarrow \psi)}{(\varphi \to \psi)} \qquad \frac{(\varphi \leftrightarrow \psi)}{(\psi \to \varphi)}$$

D4. Inference Rules and Calculi

Derivation

Definition (Derivation)

A derivation or proof of a formula φ from a knowledge base KB is a sequence of formulas ψ_1, \ldots, ψ_k with

- $\psi_{\mathbf{k}} = \varphi$ and
- ▶ for all $i \in \{1, ..., k\}$:
 - $\psi_i \in \mathsf{KB}$, or
 - ψ_i is the result of the application of an inference rule to elements from $\{\psi_1, \dots, \psi_{i-1}\}.$

German: Ableitung, Beweis

D4 Inference Inference Rules and Calculi

Derivation: Example

Example

Given: KB = $\{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

Task: Find derivation of $(S \land R)$ from KB.

- P (KB)
- \bigcirc $(P \rightarrow Q)$ (KB)
- Q (1, 2, Modus ponens)
- $(P \rightarrow R)$ (KB)
- R (1, 4, Modus ponens)
- \bigcirc ($Q \land R$) (3, 5, \land -introduction)
- \bigcirc $((Q \land R) \rightarrow S)$ (KB)
- **3** *S* (6, 7, Modus ponens)
- $(S \land R)$ (8, 5, \land -introduction)

D4 Inference Inference Rules and Calculi

Correctness and Completeness

Definition (Correctness and Completeness of a Calculus)

We write $KB \vdash_{\mathcal{C}} \varphi$ if there is a derivation of φ from KB in calculus C.

(If calculus C is clear from context, also only KB $\vdash \varphi$.)

A calculus C is correct if for all KB and φ $\mathsf{KB} \vdash_{\mathsf{C}} \varphi \text{ implies } \mathsf{KB} \models \varphi.$

A calculus C is complete if for all KB and φ $\mathsf{KB} \models \varphi \text{ implies } \mathsf{KB} \vdash_{\mathsf{C}} \varphi.$

Consider calculus C, consisting of the derivation rules seen earlier.

Question: Is C correct? Question: Is C complete?

German: korrekt, vollständig

D4. Inference Summary

D4.2 Summary

D4 Inference Summarv

Summary (Consequence and Inference)

- knowledge base: set of formulas describing given information; satisfiable, valid etc. used like for individual formulas
- ightharpoonup logical consequence KB $\models \varphi$ means that φ is true whenever (= in all models where) KB is true
- ightharpoonup A logical consequence KB $\models \varphi$ allows to conclude that KB implies φ based on the semantics.
- ► A correct calculus supports such conclusions on the basis of purely syntactical derivations KB $\vdash \varphi$.

D4 Inference Summarv

Further Topics

There are many aspects of propositional logic that we do not cover in this course.

- resolution: a commonly used proof system for formulas in CNF
- other proof systems, for example tableaux proofs
- algorithms for model construction, such as the Davis-Putnam-Logemann-Loveland (DPLL) algorithm.
- → Foundations of Al course