Discrete Mathematics in Computer Science D3. Normal Forms and Logical Consequence

Malte Helmert, Gabriele Röger

University of Basel

December 2/4, 2024

Simplified Notation

Parentheses

Associativity:

$$((\varphi \wedge \psi) \wedge \chi) \equiv (\varphi \wedge (\psi \wedge \chi))$$
$$((\varphi \vee \psi) \vee \chi) \equiv (\varphi \vee (\psi \vee \chi))$$

- Placement of parentheses for a conjunction of conjunctions does not influence whether an interpretation is a model.
- ditto for disjunctions of disjunctions
- can omit parentheses and treat this as if parentheses placed arbitrarily
 - **Example**: $(A_1 \wedge A_2 \wedge A_3 \wedge A_4)$ instead of $((A_1 \wedge (A_2 \wedge A_3)) \wedge A_4)$
 - Example: $(\neg A \lor (B \land C) \lor D)$ instead of $((\neg A \lor (B \land C)) \lor D)$

Parentheses

Does this mean we can always omit all parentheses and assume an arbitrary placement? \rightsquigarrow No!

$$((\varphi \wedge \psi) \vee \chi) \not\equiv (\varphi \wedge (\psi \vee \chi))$$

What should $\varphi \wedge \psi \vee \chi$ mean?

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- \blacksquare ¬ binds more strongly than \land
- $lue{}$ \land binds more strongly than \lor
- lacktriangle \lor binds more strongly than \to or \leftrightarrow

→ cf. PEMDAS/ "Punkt vor Strich"

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- lacksquare \neg binds more strongly than \land
- lacktriangle \wedge binds more strongly than \vee
- lacktriangle \lor binds more strongly than \to or \leftrightarrow

→ cf. PEMDAS/ "Punkt vor Strich"

Example

 $A \vee \neg C \wedge B \to A \vee \neg D$ stands for $A \vee \neg C \wedge B \to A \vee \neg D$

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- lacksquare \neg binds more strongly than \land
- lacktriangle \wedge binds more strongly than \vee
- lacktriangle \lor binds more strongly than \to or \leftrightarrow

→ cf. PEMDAS/ "Punkt vor Strich"

Example

 $A \vee \neg C \wedge B \to A \vee \neg D \text{ stands for } A \vee \big(\neg C \wedge B \big) \to A \vee \neg D$

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- lacksquare \neg binds more strongly than \land
- $lue{}$ \wedge binds more strongly than \vee
- lacktriangle \lor binds more strongly than \to or \leftrightarrow

$$\mathsf{A} \vee \neg \mathsf{C} \wedge \mathsf{B} \to \mathsf{A} \vee \neg \mathsf{D} \text{ stands for } (\mathsf{A} \vee (\neg \mathsf{C} \wedge \mathsf{B})) \to (\mathsf{A} \vee \neg \mathsf{D})$$

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- lacksquare \neg binds more strongly than \land
- lacktriangle \wedge binds more strongly than \vee
- lacktriangle \lor binds more strongly than \to or \leftrightarrow

Example

 $\mathsf{A} \vee \neg \mathsf{C} \wedge \mathsf{B} \to \mathsf{A} \vee \neg \mathsf{D} \text{ stands for } ((\mathsf{A} \vee (\neg \mathsf{C} \wedge \mathsf{B})) \to (\mathsf{A} \vee \neg \mathsf{D}))$

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- \blacksquare ¬ binds more strongly than \land
- lacktriangle \wedge binds more strongly than \vee
- lacksquare \lor binds more strongly than \to or \leftrightarrow

→ cf. PEMDAS/ "Punkt vor Strich"

$$\mathsf{A} \vee \neg \mathsf{C} \wedge \mathsf{B} \to \mathsf{A} \vee \neg \mathsf{D} \text{ stands for } ((\mathsf{A} \vee (\neg \mathsf{C} \wedge \mathsf{B})) \to (\mathsf{A} \vee \neg \mathsf{D}))$$

- often harder to read
- error-prone
- → not used in this course

Short notation for addition:

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$$

Short notation for addition:

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$$

Analogously:

$$\bigwedge_{i=1}^{n} \varphi_{i} = (\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{n})$$

$$\bigvee_{i=1}^{n} \varphi_{i} = (\varphi_{1} \vee \varphi_{2} \vee \cdots \vee \varphi_{n})$$

Short notation for addition:

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$$
$$\sum_{x \in \{x_1, \dots, x_n\}} x = x_1 + x_2 + \dots + x_n$$

Analogously:

$$\bigwedge_{i=1}^{n} \varphi_{i} = (\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{n})$$

$$\bigvee_{i=1}^{n} \varphi_{i} = (\varphi_{1} \vee \varphi_{2} \vee \cdots \vee \varphi_{n})$$

Short notation for addition:

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$$
$$\sum_{x \in \{x_1, \dots, x_n\}} x = x_1 + x_2 + \dots + x_n$$

Analogously (possible because of commutativity of \land and \lor):

$$\bigwedge_{i=1}^{n} \varphi_{i} = (\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{n})$$

$$\bigvee_{i=1}^{n} \varphi_{i} = (\varphi_{1} \vee \varphi_{2} \vee \cdots \vee \varphi_{n})$$

$$\bigwedge_{\varphi \in X} \varphi = (\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{n})$$

$$\bigvee_{\varphi \in X} \varphi = (\varphi_{1} \vee \varphi_{2} \vee \cdots \vee \varphi_{n})$$
for $X = \{\varphi_{1}, \dots, \varphi_{n}\}$

Short Notation: Corner Cases

Is $\mathcal{I} \models \psi$ true for

$$\psi = \bigwedge_{\varphi \in \mathbf{X}} \varphi$$
 and $\psi = \bigvee_{\varphi \in \mathbf{X}} \varphi$

if
$$X = \emptyset$$
 or $X = {\chi}$?

Short Notation: Corner Cases

Is $\mathcal{I} \models \psi$ true for

$$\psi = \bigwedge_{\varphi \in \mathbf{X}} \varphi$$
 and $\psi = \bigvee_{\varphi \in \mathbf{X}} \varphi$

if
$$X = \emptyset$$
 or $X = {\chi}$?

convention:

- $lack \bigwedge_{\varphi \in \emptyset} \varphi$ is a tautology.
- $lack \bigvee_{\varphi\in\emptyset} \varphi$ is unsatisfiable.

→ Why?

Exercise

Express
$$\bigwedge_{i=1}^2 \bigvee_{j=1}^3 \varphi_{ij}$$
 without \bigwedge and \bigvee .

Normal Forms

Why Normal Forms?

- A normal form is a representation with certain syntactic restrictions.
- condition for reasonable normal form: every formula must have a logically equivalent formula in normal form
- advantages:
 - can restrict proofs to formulas in normal form
 - can define algorithms to work only for formulas in normal form

German: Normalform

Negation Normal Form

Definition (Negation Normal Form)

A formula is in negation normal form (NNF) if it does not contain the abbreviations \rightarrow and \leftrightarrow and if it contains no negation symbols except possibly directly in front of atomic propositions.

German: Negationsnormalform

Example

 $((\neg P \lor (R \land Q)) \land (P \lor \neg S))$ is in NNF. $(P \land \neg (Q \lor R))$ is not in NNF.

Construction of NNF

Algorithm to Construct NNF

- Replace abbreviation \leftrightarrow by its definition ((\leftrightarrow)-elimination). \rightsquigarrow formula structure: only \neg , \lor , \land , \rightarrow
- **2** Replace abbreviation \rightarrow by its definition ((\rightarrow)-elimination). \rightarrow formula structure: only \neg , \lor , \land
- Repeatedly apply double negation and De Morgan rules until no rules match any more ("move negations inside"):
 - Replace $\neg \neg \varphi$ by φ .
 - Replace $\neg(\varphi \land \psi)$ by $(\neg \varphi \lor \neg \psi)$.
 - Replace $\neg(\varphi \lor \psi)$ by $(\neg \varphi \land \neg \psi)$.
 - \rightsquigarrow formula structure: only atoms, negated atoms, \lor , \land

Construction of Negation Normal Form

Given: $\varphi = (((P \land \neg Q) \lor R) \rightarrow (P \lor \neg (S \lor T)))$

Given:
$$\varphi = (((P \land \neg Q) \lor R) \to (P \lor \neg(S \lor T)))$$

$$\varphi \equiv (\neg((P \land \neg Q) \lor R) \lor P \lor \neg(S \lor T))$$
 [Step 2]

Construction of Negation Normal Form

Given:
$$\varphi = (((P \land \neg Q) \lor R) \rightarrow (P \lor \neg(S \lor T)))$$

$$\varphi \equiv (\neg((P \land \neg Q) \lor R) \lor P \lor \neg(S \lor T))$$
 [Step 2]

[Step 3]

$$\equiv ((\neg(P \land \neg Q) \land \neg R) \lor P \lor \neg(S \lor T))$$

Given:
$$\varphi = (((P \land \neg Q) \lor R) \to (P \lor \neg(S \lor T)))$$

$$\varphi \equiv (\neg((P \land \neg Q) \lor R) \lor P \lor \neg(S \lor T)) \qquad [Step 2]$$

$$\equiv ((\neg(P \land \neg Q) \land \neg R) \lor P \lor \neg(S \lor T)) \qquad [Step 3]$$

$$\equiv (((\neg P \lor \neg \neg Q) \land \neg R) \lor P \lor \neg(S \lor T)) \qquad [Step 3]$$

Given:
$$\varphi = (((P \land \neg Q) \lor R) \to (P \lor \neg(S \lor T)))$$

$$\varphi \equiv (\neg((P \land \neg Q) \lor R) \lor P \lor \neg(S \lor T)) \qquad [Step 2]$$

$$\equiv (((\neg(P \land \neg Q) \land \neg R) \lor P \lor \neg(S \lor T)) \qquad [Step 3]$$

$$\equiv (((\neg P \lor \neg \neg Q) \land \neg R) \lor P \lor \neg(S \lor T)) \qquad [Step 3]$$

$$\equiv (((\neg P \lor Q) \land \neg R) \lor P \lor \neg(S \lor T)) \qquad [Step 3]$$

Given:
$$\varphi = (((P \land \neg Q) \lor R) \to (P \lor \neg(S \lor T)))$$

$$\varphi \equiv (\neg((P \land \neg Q) \lor R) \lor P \lor \neg(S \lor T)) \qquad [Step 2]$$

$$\equiv ((\neg(P \land \neg Q) \land \neg R) \lor P \lor \neg(S \lor T)) \qquad [Step 3]$$

$$\equiv (((\neg P \lor \neg \neg Q) \land \neg R) \lor P \lor \neg(S \lor T)) \qquad [Step 3]$$

$$\equiv (((\neg P \lor Q) \land \neg R) \lor P \lor \neg(S \lor T)) \qquad [Step 3]$$

$$\equiv (((\neg P \lor Q) \land \neg R) \lor P \lor (\neg S \land \neg T)) \qquad [Step 3]$$

Literals, Clauses and Monomials

- A literal is an atomic proposition or the negation of an atomic proposition (e.g., A and $\neg A$).
- A clause is a disjunction of literals (e.g., $(Q \lor \neg P \lor \neg S \lor R)$).
- A monomial is a conjunction of literals (e.g., $(Q \land \neg P \land \neg S \land R)$).

The terms clause and monomial are also used for the corner case with only one literal.

German: Literal, Klausel, Monom

- **■** (¬Q ∧ R)
- **■** (P ∨ ¬Q)
- **■** ((P ∨ ¬Q) ∧ P)
- ¬P
- **■** (P → Q)
- **■** (P ∨ P)
- ¬¬P

- \blacksquare $(\neg Q \land R)$ is a monomial
- **■** (P ∨ ¬Q)
- **■** ((P ∨ ¬Q) ∧ P)
- ¬P
- **■** (P → Q)
- **■** (P ∨ P)
- ¬¬P

- \blacksquare (\neg Q \land R) is a monomial
- \blacksquare (P $\vee \neg$ Q) is a clause
- $((P \vee \neg Q) \wedge P)$
- ¬P
- **■** (P → Q)
- **■** (P ∨ P)
- ¬¬P

- \blacksquare $(\neg Q \land R)$ is a monomial
- $(P \lor \neg Q)$ is a clause
- ullet ((P $\vee \neg$ Q) \wedge P) is neither literal nor clause nor monomial
- ¬P
- **■** (P → Q)
- **■** (P ∨ P)
- ¬¬P

- \blacksquare ($\neg Q \land R$) is a monomial
- \blacksquare (P $\vee \neg$ Q) is a clause
- \blacksquare $((P \lor \neg Q) \land P)$ is neither literal nor clause nor monomial
- ¬P is a literal, a clause and a monomial
- **■** (P → Q)
- **■** (P ∨ P)
- ¬¬P

- \blacksquare ($\neg Q \land R$) is a monomial
- \blacksquare (P $\vee \neg$ Q) is a clause
- ullet ((P $\vee \neg$ Q) \wedge P) is neither literal nor clause nor monomial
- ¬P is a literal, a clause and a monomial
- $(P \rightarrow Q)$ is neither literal nor clause nor monomial (but $(\neg P \lor Q)$ is a clause!)
- **■** (P ∨ P)
- ¬¬P

- \blacksquare ($\neg Q \land R$) is a monomial
- \blacksquare (P $\vee \neg$ Q) is a clause
- ullet $((P \lor \neg Q) \land P)$ is neither literal nor clause nor monomial
- ¬P is a literal, a clause and a monomial
- $(P \rightarrow Q)$ is neither literal nor clause nor monomial (but $(\neg P \lor Q)$ is a clause!)
- \blacksquare (P \lor P) is a clause, but not a literal or monomial
- ¬¬P

- \blacksquare ($\neg Q \land R$) is a monomial
- \blacksquare (P $\vee \neg$ Q) is a clause
- \blacksquare ((P $\vee \neg Q$) \wedge P) is neither literal nor clause nor monomial
- ¬P is a literal, a clause and a monomial
- $(P \rightarrow Q)$ is neither literal nor clause nor monomial (but $(\neg P \lor Q)$ is a clause!)
- \blacksquare (P \lor P) is a clause, but not a literal or monomial
- ¬¬P is neither literal nor clause nor monomial

Conjunctive Normal Form

Definition (Conjunctive Normal Form)

A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses, i. e., if it has the form

$$\bigwedge_{i=1}^{n} \bigvee_{j=1}^{m_i} L_{ij}$$

with $n, m_i > 0$ (for $1 \le i \le n$), where the L_{ij} are literals.

German: konjunktive Normalform (KNF)

Example

 $((\neg P \lor Q) \land R \land (P \lor \neg S))$ is in CNF.

Disjunctive Normal Form

Definition (Disjunctive Normal Form)

A formula is in disjunctive normal form (DNF) if it is a disjunction of monomials, i. e., if it has the form

$$\bigvee_{i=1}^{n} \bigwedge_{j=1}^{m_i} L_{ij}$$

with $n, m_i > 0$ (for $1 \le i \le n$), where the L_{ij} are literals.

German: disjunktive Normalform (DNF)

Example

 $((\neg P \land Q) \lor R \lor (P \land \neg S))$ is in DNF.

- **■** ((P ∨ ¬Q) ∧ P)
- $\bullet ((R \lor Q) \land P \land (R \lor S))$
- $(P \lor (\neg Q \land R))$
- **■** (P ∨ ¬¬Q)
- **■** (P → ¬Q)
- $((P \lor \neg Q) \to P)$
- P

- \blacksquare ((P $\vee \neg$ Q) \wedge P) is in NNF and CNF
- $((R \lor Q) \land P \land (R \lor S))$
- $(P \lor (\neg Q \land R))$
- **■** (P ∨ ¬¬Q)
- **■** (P → ¬Q)
- $((P \lor \neg Q) \to P)$
- P

- \blacksquare ((P $\vee \neg$ Q) \wedge P) is in NNF and CNF
- \blacksquare ((R \lor Q) \land P \land (R \lor S)) is in NNF and CNF
- $\bullet (P \lor (\neg Q \land R))$
- **■** (P ∨ ¬¬Q)
- **■** (P → ¬Q)
- $((P \lor \neg Q) \to P)$
- P

- \blacksquare ((P $\vee \neg$ Q) \wedge P) is in NNF and CNF
- $((R \lor Q) \land P \land (R \lor S))$ is in NNF and CNF
- $(P \lor (\neg Q \land R))$ is in NNF and DNF
- **■** (P ∨ ¬¬Q)
- **■** (P → ¬Q)
- $((P \lor \neg Q) \to P)$
- P

- \blacksquare ((P $\vee \neg$ Q) \wedge P) is in NNF and CNF
- $((R \lor Q) \land P \land (R \lor S))$ is in NNF and CNF
- $(P \lor (\neg Q \land R))$ is in NNF and DNF
- \blacksquare (P $\lor \neg \neg Q$) is in none of the normal forms
- $((P \lor \neg Q) \to P)$
- P

- \blacksquare ((P $\vee \neg$ Q) \wedge P) is in NNF and CNF
- $((R \lor Q) \land P \land (R \lor S))$ is in NNF and CNF
- $(P \lor (\neg Q \land R))$ is in NNF and DNF
- \blacksquare (P $\lor \neg \neg Q$) is in none of the normal forms
- $(P \rightarrow \neg Q)$ is in none of the normal forms, but is in all three after expanding \rightarrow
- $((P \lor \neg Q) \to P)$
- P

- \blacksquare ((P $\vee \neg$ Q) \wedge P) is in NNF and CNF
- $((R \lor Q) \land P \land (R \lor S))$ is in NNF and CNF
- $(P \lor (\neg Q \land R))$ is in NNF and DNF
- \blacksquare (P $\vee \neg \neg Q$) is in none of the normal forms
- $(P \rightarrow \neg Q)$ is in none of the normal forms, but is in all three after expanding \rightarrow
- \blacksquare ((P $\vee \neg Q$) \rightarrow P) is in none of the normal forms
- P

- \blacksquare ((P $\vee \neg$ Q) \wedge P) is in NNF and CNF
- $((R \lor Q) \land P \land (R \lor S))$ is in NNF and CNF
- $(P \lor (\neg Q \land R))$ is in NNF and DNF
- \blacksquare (P $\vee \neg \neg Q$) is in none of the normal forms
- $(P \rightarrow \neg Q)$ is in none of the normal forms, but is in all three after expanding \rightarrow
- \blacksquare ((P $\vee \neg Q$) \rightarrow P) is in none of the normal forms
- P is in NNF, CNF and DNF

Construction of CNF (and DNF)

Algorithm to Construct CNF

First, convert to NNF (steps 1–3).

- \rightsquigarrow formula structure: only literals, \lor , \land
 - Repeatedly apply distributivity or commutativity + distributivity to distribute ∨ over ∧:
 - Replace $(\varphi \lor (\psi \land \chi))$ by $((\varphi \lor \psi) \land (\varphi \lor \chi))$.
 - Replace $((\psi \land \chi) \lor \varphi)$ by $((\psi \lor \varphi) \land (\chi \lor \varphi))$.
 - → formula structure: CNF
 - optionally: Simplify the formula at the end or at intermediate steps (e.g., with idempotence).

Note: For DNF, swap the roles of \wedge and \vee in Step 4.

Given:
$$\varphi = (((P \land \neg Q) \lor R) \rightarrow (P \lor \neg (S \lor T)))$$

Given:
$$\varphi = (((P \land \neg Q) \lor R) \to (P \lor \neg(S \lor T)))$$

$$\varphi \equiv (((\neg P \lor Q) \land \neg R) \lor P \lor (\neg S \land \neg T))$$
 [to NNF]

Given:
$$\varphi = (((P \land \neg Q) \lor R) \to (P \lor \neg(S \lor T)))$$

$$\varphi \equiv (((\neg P \lor Q) \land \neg R) \lor P \lor (\neg S \land \neg T)) \text{ [to NNF]}$$

$$\equiv ((\neg P \lor Q \lor P \lor (\neg S \land \neg T)) \land (\neg R \lor P \lor (\neg S \land \neg T))) \text{ [Step 4]}$$

Given:
$$\varphi = (((P \land \neg Q) \lor R) \to (P \lor \neg (S \lor T)))$$

$$\varphi \equiv (((\neg P \lor Q) \land \neg R) \lor P \lor (\neg S \land \neg T)) \text{ [to NNF]}$$

$$\equiv ((\neg P \lor Q \lor P \lor (\neg S \land \neg T)) \land (\neg R \lor P \lor (\neg S \land \neg T))) \text{ [Step 4]}$$

$$\equiv (\neg R \lor P \lor (\neg S \land \neg T)) \text{ [Step 5]}$$

Given:
$$\varphi = (((P \land \neg Q) \lor R) \to (P \lor \neg (S \lor T)))$$

$$\varphi \equiv (((\neg P \lor Q) \land \neg R) \lor P \lor (\neg S \land \neg T)) \text{ [to NNF]}$$

$$\equiv ((\neg P \lor Q \lor P \lor (\neg S \land \neg T)) \land (\neg R \lor P \lor (\neg S \land \neg T))) \text{ [Step 4]}$$

$$\equiv (\neg R \lor P \lor (\neg S \land \neg T)) \text{ [Step 5]}$$

$$\equiv ((\neg R \lor P \lor \neg S) \land (\neg R \lor P \lor \neg T)) \text{ [Step 4]}$$

Construct DNF: Example

Construction of Disjunctive Normal Form

Given:
$$\varphi = (((P \land \neg Q) \lor R) \to (P \lor \neg(S \lor T)))$$

$$\varphi \equiv (((\neg P \lor Q) \land \neg R) \lor P \lor (\neg S \land \neg T))$$

$$\equiv ((\neg P \land \neg R) \lor (Q \land \neg R) \lor P \lor (\neg S \land \neg T))$$

$$\equiv ((\neg P \land \neg R) \lor (Q \land \neg R) \lor P \lor (\neg S \land \neg T))$$
 [Step 4]

[to NNF]

Existence of an Equivalent Formula in Normal Form

Theorem

For every formula φ there is a logically equivalent formula in NNF, a logically equivalent formula in CNF and a logically equivalent formula in DNF.

- "There is a" always means "there is at least one". Otherwise we would write "there is exactly one".
- Intuition: algorithms to construct normal forms work with any given formula and only use equivalence rewriting.
- actual proof would use induction over structure of formula

Size of Normal Forms

- In the worst case, a logically equivalent formula in CNF or DNF can be exponentially larger than the original formula.
- Example: for $(x_1 \lor y_1) \land \cdots \land (x_n \lor y_n)$ there is no smaller logically equivalent formula in DNF than:

$$\bigvee_{S \in \mathcal{P}(\{1,\dots,n\})} \left(\bigwedge_{i \in S} x_i \wedge \bigwedge_{i \in \{1,\dots,n\} \setminus S} y_i \right)$$

- As a consequence, the construction of the CNF/DNF formula can take exponential time.
- For NNF, we can generate an equivalent formula in linear time if the original formula does not use ↔.

More Theorems

Theorem

A formula in CNF is a tautology iff every clause is a tautology.

Theorem

A formula in DNF is satisfiable iff at least one of its monomials is satisfiable.

→ both proved easily with semantics of propositional logic

Knowledge Bases

Knowledge Bases: Example

If not DrinkBeer, then EatFish.

If EatFish and DrinkBeer,
then not EatIceCream.

If EatIceCream or not DrinkBeer,
then not EatFish.

```
\label{eq:KB} \begin{split} \mathsf{KB} &= \{ \big( \neg \mathsf{DrinkBeer} \to \mathsf{EatFish} \big), \\ &\quad \big( \big( \mathsf{EatFish} \land \mathsf{DrinkBeer} \big) \to \neg \mathsf{EatIceCream} \big), \\ &\quad \big( \big( \mathsf{EatIceCream} \lor \neg \mathsf{DrinkBeer} \big) \to \neg \mathsf{EatFish} \big) \} \end{split}
```

Models for Sets of Formulas

Definition (Model for Knowledge Base)

Let KB be a knowledge base over A, i. e., a set of propositional formulas over A.

A truth assignment \mathcal{I} for A is a model for KB (written: $\mathcal{I} \models KB$) if \mathcal{I} is a model for every formula $\varphi \in KB$.

German: Wissensbasis, Modell

Properties of Sets of Formulas

A knowledge base KB is

- satisfiable if KB has at least one model
- unsatisfiable if KB is not satisfiable
- valid (or a tautology) if every interpretation is a model for KB
- falsifiable if KB is no tautology

German: erfüllbar, unerfüllbar, gültig, gültig/eine Tautologie, falsifizierbar

Example I

Which of the properties does $KB = \{(A \land \neg B), \neg (B \lor A)\}\$ have?

Example I

Which of the properties does $KB = \{(A \land \neg B), \neg (B \lor A)\}$ have?

KB is unsatisfiable:

For every model \mathcal{I} with $\mathcal{I} \models (A \land \neg B)$ we have $\mathcal{I}(A) = 1$. This means $\mathcal{I} \models (B \lor A)$ and thus $\mathcal{I} \not\models \neg (B \lor A)$.

This directly implies that KB is falsifiable, not satisfiable and no tautology.

Example II

Which of the properties does

```
\label{eq:KB} \begin{split} \mathsf{KB} &= \{ \big( \neg \mathsf{DrinkBeer} \to \mathsf{EatFish} \big), \\ &\quad \big( \big( \mathsf{EatFish} \land \mathsf{DrinkBeer} \big) \to \neg \mathsf{EatIceCream} \big), \\ &\quad \big( \big( \mathsf{EatIceCream} \lor \neg \mathsf{DrinkBeer} \big) \to \neg \mathsf{EatFish} \big) \} \ \mathsf{have} ? \end{split}
```

Example II

Which of the properties does

```
\begin{split} \mathsf{KB} &= \{ \big( \neg \mathsf{DrinkBeer} \to \mathsf{EatFish} \big), \\ &\quad \big( \big( \mathsf{EatFish} \land \mathsf{DrinkBeer} \big) \to \neg \mathsf{EatIceCream} \big), \\ &\quad \big( \big( \mathsf{EatIceCream} \lor \neg \mathsf{DrinkBeer} \big) \to \neg \mathsf{EatFish} \big) \} \ \mathsf{have?} \end{split}
```

- satisfiable, e. g. with $\mathcal{I} = \{ \mathsf{EatFish} \mapsto 1, \mathsf{DrinkBeer} \mapsto 1, \mathsf{EatIceCream} \mapsto 0 \}$
- thus not unsatisfiable
- falsifiable, e. g. with $\mathcal{I} = \{ \text{EatFish} \mapsto 0, \text{DrinkBeer} \mapsto 0, \text{EatIceCream} \mapsto 1 \}$
- thus not valid

Logical Consequences

Logical Consequences: Motivation

What's the secret of your long life?

I am on a strict diet: If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

Claim: the woman drinks beer to every meal.

How can we prove this?

Logical Consequences

Definition (Logical Consequence)

Let KB be a set of formulas and φ a formula.

We say that KB logically implies φ (written as KB $\models \varphi$) if all models of KB are also models of φ .

also: KB logically entails φ , φ logically follows from KB, φ is a logical consequence of KB

German: KB impliziert φ logisch, φ folgt logisch aus KB, φ ist logische Konsequenz von KB

Attention: the symbol \models is "overloaded": KB $\models \varphi$ vs. $\mathcal{I} \models \varphi$.

What if KB is unsatisfiable or the empty set?

Logical Consequences: Example

```
Let \varphi = \mathsf{DrinkBeer} and \mathsf{KB} = \{ (\neg \mathsf{DrinkBeer} \to \mathsf{EatFish}), \\ ((\mathsf{EatFish} \land \mathsf{DrinkBeer}) \to \neg \mathsf{EatIceCream}), \\ ((\mathsf{EatIceCream} \lor \neg \mathsf{DrinkBeer}) \to \neg \mathsf{EatFish}) \}.
```

Show: $KB \models \varphi$

Logical Consequences: Example

```
Let \varphi = \mathsf{DrinkBeer} and \mathsf{KB} = \{ (\neg \mathsf{DrinkBeer} \to \mathsf{EatFish}), \\ ((\mathsf{EatFish} \land \mathsf{DrinkBeer}) \to \neg \mathsf{EatIceCream}), \\ ((\mathsf{EatIceCream} \lor \neg \mathsf{DrinkBeer}) \to \neg \mathsf{EatFish}) \}.
```

Show: $KB \models \varphi$

Proof sketch.

```
Proof by contradiction: assume \mathcal{I} \models \mathsf{KB}, but \mathcal{I} \not\models \mathsf{DrinkBeer}. Then it follows that \mathcal{I} \models \neg \mathsf{DrinkBeer}. Because \mathcal{I} is a model of \mathsf{KB}, we also have \mathcal{I} \models (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{EatFish}) and thus \mathcal{I} \models \mathsf{EatFish}. (Why?) With an analogous argumentation starting from \mathcal{I} \models ((\mathsf{EatIceCream} \lor \neg \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatFish}) we get \mathcal{I} \models \neg \mathsf{EatFish} and thus \mathcal{I} \not\models \mathsf{EatFish}. \leadsto \mathsf{Contradiction!}
```

Important Theorems about Logical Consequences

Theorem (Deduction Theorem)

 $\mathsf{KB} \cup \{\varphi\} \models \psi \text{ iff } \mathsf{KB} \models (\varphi \to \psi)$

German: Deduktionssatz

Theorem (Contraposition Theorem)

 $\mathsf{KB} \cup \{\varphi\} \models \neg \psi \; \mathit{iff} \; \mathsf{KB} \cup \{\psi\} \models \neg \varphi$

German: Kontrapositionssatz

Theorem (Contradiction Theorem)

 $\mathsf{KB} \cup \{\varphi\}$ is unsatisfiable iff $\mathsf{KB} \models \neg \varphi$

German: Widerlegungssatz

(without proof)