Discrete Mathematics in Computer Science D3. Normal Forms and Logical Consequence

Malte Helmert, Gabriele Röger

University of Basel

December 2/4, 2024

[Simplified Notation](#page-1-0)

Parentheses

Associativity:

$$
((\varphi \land \psi) \land \chi) \equiv (\varphi \land (\psi \land \chi))
$$

$$
((\varphi \lor \psi) \lor \chi) \equiv (\varphi \lor (\psi \lor \chi))
$$

- **Placement of parentheses for a conjunction of conjunctions** does not influence whether an interpretation is a model.
- ditto for disjunctions of disjunctions
- \rightarrow can omit parentheses and treat this as if parentheses placed arbitrarily
	- Example: $(A_1 \wedge A_2 \wedge A_3 \wedge A_4)$ instead of $((A_1 \wedge (A_2 \wedge A_3)) \wedge A_4)$
	- Example: $(\neg A \lor (B \land C) \lor D)$ instead of $((\neg A \lor (B \land C)) \lor D)$

Parentheses

Does this mean we can always omit all parentheses and assume an arbitrary placement? \rightsquigarrow No!

$$
((\varphi \wedge \psi) \vee \chi) \not\equiv (\varphi \wedge (\psi \vee \chi))
$$

What should $\varphi \land \psi \lor \chi$ mean?

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- \blacksquare \lightharpoonup binds more strongly than \land
- ∧ binds more strongly than \vee
- \vee binds more strongly than \rightarrow or \leftrightarrow

⇝ cf. PEMDAS/"Punkt vor Strich"

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- \blacksquare \lightharpoonup binds more strongly than \land
- ∧ binds more strongly than \vee
- \vee binds more strongly than \rightarrow or \leftrightarrow

 \rightsquigarrow cf. PEMDAS/ "Punkt vor Strich"

Example

 $A \lor \neg C \land B \to A \lor \neg D$ stands for $A \lor \neg C \land B \to A \lor \neg D$

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- \blacksquare \lightharpoonup binds more strongly than \land
- ∧ binds more strongly than \vee
- \vee binds more strongly than \rightarrow or \leftrightarrow

 \rightsquigarrow cf. PEMDAS/ "Punkt vor Strich"

Example

A $\vee \neg C \wedge B \rightarrow A \vee \neg D$ stands for A $\vee (\neg C \wedge B) \rightarrow A \vee \neg D$

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- \blacksquare \lightharpoonup binds more strongly than \land
- ∧ binds more strongly than \vee
- \vee binds more strongly than \rightarrow or \leftrightarrow

 \rightsquigarrow cf. PEMDAS/ "Punkt vor Strich"

Example

A $\vee \neg C \wedge B \rightarrow A \vee \neg D$ stands for $(A \vee (\neg C \wedge B)) \rightarrow (A \vee \neg D)$

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- \blacksquare \lightharpoonup binds more strongly than \land
- ∧ binds more strongly than \vee
- \vee binds more strongly than \rightarrow or \leftrightarrow

 \rightsquigarrow cf. PEMDAS/ "Punkt vor Strich"

Example

A ∨ ¬C \land B \rightarrow A \lor ¬D stands for $((A \lor (\neg C \land B)) \rightarrow (A \lor \neg D))$

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- \blacksquare \lightharpoonup binds more strongly than \land
- ∧ binds more strongly than \vee
- \vee binds more strongly than \rightarrow or \leftrightarrow

 \rightsquigarrow cf. PEMDAS/ "Punkt vor Strich"

Example

A ∨ ¬C \land B \rightarrow A \lor ¬D stands for $((A \lor (\neg C \land B)) \rightarrow (A \lor \neg D))$

- often harder to read
- error-prone
- \rightarrow not used in this course

Short notation for addition:

$$
\sum_{i=1}^n x_i = x_1 + x_2 + \cdots + x_n
$$

Short notation for addition:

$$
\sum_{i=1}^n x_i = x_1 + x_2 + \cdots + x_n
$$

Analogously:

$$
\bigwedge_{i=1}^{n} \varphi_{i} = (\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{n})
$$

$$
\bigvee_{i=1}^{n} \varphi_{i} = (\varphi_{1} \vee \varphi_{2} \vee \cdots \vee \varphi_{n})
$$

Short notation for addition:

$$
\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n
$$

$$
\sum_{x \in \{x_1, \dots, x_n\}} x = x_1 + x_2 + \dots + x_n
$$

Analogously:

$$
\bigwedge_{i=1}^{n} \varphi_{i} = (\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{n})
$$

$$
\bigvee_{i=1}^{n} \varphi_{i} = (\varphi_{1} \vee \varphi_{2} \vee \cdots \vee \varphi_{n})
$$

Short notation for addition:

$$
\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n
$$

$$
\sum_{x \in \{x_1, \dots, x_n\}} x = x_1 + x_2 + \dots + x_n
$$

Analogously (possible because of commutativity of ∧ and ∨):

$$
\bigwedge_{i=1}^{n} \varphi_{i} = (\varphi_{1} \land \varphi_{2} \land \cdots \land \varphi_{n})
$$

$$
\bigvee_{i=1}^{n} \varphi_{i} = (\varphi_{1} \lor \varphi_{2} \lor \cdots \lor \varphi_{n})
$$

$$
\bigwedge_{\varphi \in X} \varphi = (\varphi_{1} \land \varphi_{2} \land \cdots \land \varphi_{n})
$$

$$
\bigvee_{\varphi \in X} \varphi = (\varphi_{1} \lor \varphi_{2} \lor \cdots \lor \varphi_{n})
$$

for $X = {\varphi_{1}, \ldots, \varphi_{n}}$

Short Notation: Corner Cases

Is $\mathcal{I} \models \psi$ true for

$$
\psi = \bigwedge\nolimits_{\varphi \in X} \varphi \text{ and } \psi = \bigvee\nolimits_{\varphi \in X} \varphi
$$

if $X = \emptyset$ or $X = \{\chi\}$?

Short Notation: Corner Cases

Is $\mathcal{I} \models \psi$ true for

$$
\psi = \bigwedge\nolimits_{\varphi \in X} \varphi \text{ and } \psi = \bigvee\nolimits_{\varphi \in X} \varphi
$$

if $X = \emptyset$ or $X = \{\chi\}$?

convention:

\n- $$
\bigwedge_{\varphi \in \emptyset} \varphi
$$
 is a tautology.
\n- $\bigvee_{\varphi \in \emptyset} \varphi$ is unsatisfiable.
\n- $\bigwedge_{\varphi \in \{\chi\}} \varphi = \bigvee_{\varphi \in \{\chi\}} \varphi = \chi$
\n

 \rightsquigarrow Why?

Exercise

Express $\bigwedge_{i=1}^2 \bigvee_{j=1}^3 \varphi_{ij}$ without \bigwedge and \bigvee .

[Normal Forms](#page-17-0)

Why Normal Forms?

- A normal form is a representation with certain syntactic restrictions.
- **n** condition for reasonable normal form: every formula must have a logically equivalent formula in normal form
- advantages:
	- can restrict proofs to formulas in normal form
	- can define algorithms to work only for formulas in normal form

German: Normalform

Negation Normal Form

Definition (Negation Normal Form)

A formula is in negation normal form (NNF) if it does not contain the abbreviations \rightarrow and \leftrightarrow and if it contains no negation symbols except possibly directly in front of atomic propositions.

German: Negationsnormalform

Example

 $((\neg P \lor (R \land Q)) \land (P \lor \neg S))$ is in NNF. $(P \wedge \neg (Q \vee R))$ is not in NNF.

Construction of NNF

Algorithm to Construct NNF

- **O** Replace abbreviation \leftrightarrow by its definition ((\leftrightarrow) -elimination). \rightsquigarrow formula structure: only \neg , \vee , \wedge , \rightarrow
- **2** Replace abbreviation \rightarrow by its definition ((\rightarrow)-elimination). ⇝ formula structure: only ¬, ∨, ∧
- **3** Repeatedly apply double negation and De Morgan rules until no rules match any more ("move negations inside"):
	- **Replace** $\neg\neg\varphi$ by φ .
	- Replace $\neg(\varphi \land \psi)$ by $(\neg \varphi \lor \neg \psi)$.
	- Replace $\neg(\varphi \lor \psi)$ by $(\neg \varphi \land \neg \psi)$.

 \rightarrow formula structure: only atoms, negated atoms, \vee , \wedge

Construction of Negation Normal Form

Construction of Negation Normal Form Given: $\varphi = (((P \land \neg Q) \lor R) \rightarrow (P \lor \neg (S \lor T)))$ $\varphi \equiv (\neg ((P \land \neg Q) \lor R) \lor P \lor \neg (S \lor T))$ [Step 2]

Construction of Negation Normal Form Given: $\varphi = (((P \land \neg Q) \lor R) \rightarrow (P \lor \neg (S \lor T)))$ $\varphi \equiv (\neg ((P \land \neg Q) \lor R) \lor P \lor \neg (S \lor T))$ [Step 2] $\equiv ((\neg (P \land \neg Q) \land \neg R) \lor P \lor \neg (S \lor T))$ [Step 3]

Construction of Negation Normal Form

$$
\varphi \equiv (\neg((P \land \neg Q) \lor R) \lor P \lor \neg(S \lor T)) \qquad [\text{Step 2}]
$$

\n
$$
\equiv ((\neg(P \land \neg Q) \land \neg R) \lor P \lor \neg(S \lor T)) \qquad [\text{Step 3}]
$$

\n
$$
\equiv (((\neg P \lor \neg \neg Q) \land \neg R) \lor P \lor \neg(S \lor T)) \qquad [\text{Step 3}]
$$

Construction of Negation Normal Form

$$
\varphi \equiv (\neg ((P \land \neg Q) \lor R) \lor P \lor \neg (S \lor T))
$$
 [Step 2]
= (((P \land \neg Q) \land \neg P) \lor P \lor \neg (S \lor T)) [Step 2]

$$
\equiv ((\neg (P \land \neg Q) \land \neg R) \lor P \lor \neg (S \lor T))
$$
 [Step 3]

$$
\equiv (((\neg P \lor \neg \neg Q) \land \neg R) \lor P \lor \neg (S \lor T))
$$
 [Step 3]

$$
\equiv (((\neg P \vee Q) \wedge \neg R) \vee P \vee \neg (S \vee T))
$$
 [Step 3]

Construction of Negation Normal Form Given: $\varphi = (((P \land \neg Q) \lor R) \rightarrow (P \lor \neg (S \lor T)))$ $\varphi \equiv (\neg ((P \land \neg Q) \lor R) \lor P \lor \neg (S \lor T))$ [Step 2] $\equiv ((\neg (P \land \neg Q) \land \neg R) \lor P \lor \neg (S \lor T))$ [Step 3] $\equiv (((\neg P \vee \neg \neg Q) \wedge \neg R) \vee P \vee \neg (S \vee T))$ [Step 3] $\equiv (((\neg P \vee Q) \wedge \neg R) \vee P \vee \neg (S \vee T))$ [Step 3] $\equiv (((\neg P \vee Q) \wedge \neg R) \vee P \vee (\neg S \wedge \neg T))$ [Step 3]

Literals, Clauses and Monomials

- A literal is an atomic proposition or the negation of an atomic proposition (e.g., A and $\neg A$).
- A clause is a disjunction of literals $(e.g., (Q \vee \neg P \vee \neg S \vee R)).$
- A monomial is a conjunction of literals $(e.g., (Q \wedge \neg P \wedge \neg S \wedge R)).$

The terms clause and monomial are also used for the corner case with only one literal.

German: Literal, Klausel, Monom

Examples

- $(¬Q ∧ R)$
- $(P \vee \neg Q)$
- $((P \vee \neg Q) \wedge P)$
- $\neg P$
-
- \blacksquare (P ∨ P)

 $\neg\neg P$

 $(P \rightarrow Q)$

- \blacksquare (\neg Q \land R) is a monomial
- $(P \vee \neg Q)$
- $((P \vee \neg Q) \wedge P)$
- $\blacksquare \neg P$
- $(P \rightarrow Q)$
- $(P \vee P)$
- $\neg\neg P$

- \blacksquare (\neg Q \land R) is a monomial
- $(P \vee \neg Q)$ is a clause
- $((P \vee \neg Q) \wedge P)$
- $\blacksquare \neg P$
- $(P \rightarrow Q)$
- \blacksquare (P ∨ P)
- \blacksquare $\neg\neg P$

- \blacksquare (\neg Q \land R) is a monomial
- $(P \vee \neg Q)$ is a clause
- $((P \lor \neg Q) \land P)$ is neither literal nor clause nor monomial
- \blacksquare $\neg P$
- $(P \rightarrow Q)$
- $(P \vee P)$
- \blacksquare $\neg\neg P$

- $(\neg Q \land R)$ is a monomial
- $(P \vee \neg Q)$ is a clause
- $((P \lor \neg Q) \land P)$ is neither literal nor clause nor monomial
- \blacksquare \neg P is a literal, a clause and a monomial
- $(P \rightarrow Q)$
- $(P \vee P)$ \blacksquare $\neg\neg P$

- $(\neg Q \land R)$ is a monomial
- $(P \vee \neg Q)$ is a clause
- $((P \lor \neg Q) \land P)$ is neither literal nor clause nor monomial
- \blacksquare \neg P is a literal, a clause and a monomial
- $(P \rightarrow Q)$ is neither literal nor clause nor monomial (but $(\neg P \lor Q)$ is a clause!)
- $(P \vee P)$
- \blacksquare $\neg\neg P$

- $(\neg Q \land R)$ is a monomial
- $(P \vee \neg Q)$ is a clause
- $((P \lor \neg Q) \land P)$ is neither literal nor clause nor monomial
- \blacksquare \neg P is a literal, a clause and a monomial
- $(P \rightarrow Q)$ is neither literal nor clause nor monomial (but $(\neg P \lor Q)$ is a clause!)
- $(P \vee P)$ is a clause, but not a literal or monomial
- \blacksquare $\neg\neg P$

- $(\neg Q \land R)$ is a monomial
- $(P \vee \neg Q)$ is a clause
- $((P \lor \neg Q) \land P)$ is neither literal nor clause nor monomial
- \blacksquare \neg P is a literal, a clause and a monomial
- $(P \rightarrow Q)$ is neither literal nor clause nor monomial (but $(\neg P \lor Q)$ is a clause!)
- $(P \vee P)$ is a clause, but not a literal or monomial
- \blacksquare $\neg\neg P$ is neither literal nor clause nor monomial

Conjunctive Normal Form

Definition (Conjunctive Normal Form)

A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses, i. e., if it has the form

> $\bigwedge^n\bigvee^{m_i}L_{ij}$ $i=1$ $j=1$

with $n, m_i > 0$ (for $1 \le i \le n$), where the L_{ii} are literals.

German: konjunktive Normalform (KNF)

Example

 $((\neg P \lor Q) \land R \land (P \lor \neg S))$ is in CNF.

Disjunctive Normal Form

Definition (Disjunctive Normal Form)

A formula is in disjunctive normal form (DNF) if it is a disjunction of monomials, i. e., if it has the form

$$
\bigvee_{i=1}^n\bigwedge_{j=1}^{m_i}L_{ij}
$$

with $n, m_i > 0$ (for $1 \le i \le n$), where the L_{ii} are literals.

German: disjunktive Normalform (DNF)

$$
((\neg P \land Q) \lor R \lor (P \land \neg S)) \text{ is in DNF}.
$$

((P ∨ ¬Q) ∧ P) ((R ∨ Q) ∧ P ∧ (R ∨ S)) (P ∨ (¬Q ∧ R)) (P ∨ ¬¬Q) (P → ¬Q) ((P ∨ ¬Q) → P)

$$
\blacksquare \mathsf{P} \qquad \qquad
$$

\n- \n
$$
((P \lor \neg Q) \land P)
$$
 is in NNF and CNF\n
\n- \n $((R \lor Q) \land P \land (R \lor S))$ \n
\n- \n $(P \lor (\neg Q \land R))$ \n
\n- \n $(P \lor \neg \neg Q)$ \n
\n- \n $(P \rightarrow \neg Q)$ \n
\n

$$
- ((P \lor \neg Q) \to P)
$$

Which of the following formulas are in NNF? Which are in CNF? Which are in DNF?

■ $((P \vee \neg Q) \wedge P)$ is in NNF and CNF ■ $((R \vee Q) \wedge P \wedge (R \vee S))$ is in NNF and CNF $(P \vee (\neg Q \wedge R))$ (P ∨ ¬¬Q) $(P \rightarrow \neg Q)$

$$
- ((P \vee \neg Q) \to P)
$$

$$
- ((P \vee \neg Q) \wedge P)
$$
 is in NNF and CNF

- $((R \vee Q) \wedge P \wedge (R \vee S))$ is in NNF and CNF
- $(P \vee (\neg Q \wedge R))$ is in NNF and DNF
- $(P \vee \neg\neg Q)$

$$
\blacksquare (P \rightarrow \neg Q)
$$

$$
= ((P \vee \neg Q) \to P)
$$

$$
= P
$$

$$
- ((P \vee \neg Q) \wedge P)
$$
 is in NNF and CNF

$$
\blacksquare\,\, ((R \lor Q) \land P \land (R \lor S)) \text{ is in NNF and CNF}
$$

$$
\blacksquare (P \lor (\lnot Q \land R)) \text{ is in NNF and DNF}
$$

$$
\blacksquare (P \lor \neg \neg Q)
$$
 is in none of the normal forms

$$
\blacksquare (P \rightarrow \neg Q)
$$

$$
= ((P \vee \neg Q) \to P)
$$

$$
= P
$$

- $((P \vee \neg Q) \wedge P)$ is in NNF and CNF
- $((R \vee Q) \wedge P \wedge (R \vee S))$ is in NNF and CNF
- $(P \vee (\neg Q \wedge R))$ is in NNF and DNF
- $(P \vee \neg \neg Q)$ is in none of the normal forms
- $(P \rightarrow \neg Q)$ is in none of the normal forms, but is in all three after expanding \rightarrow

$$
= ((P \vee \neg Q) \to P)
$$

- $((P \vee \neg Q) \wedge P)$ is in NNF and CNF
- $((R \vee Q) \wedge P \wedge (R \vee S))$ is in NNF and CNF
- $(P \vee (\neg Q \wedge R))$ is in NNF and DNF
- $(P \vee \neg \neg Q)$ is in none of the normal forms
- $(P \rightarrow \neg Q)$ is in none of the normal forms, but is in all three after expanding \rightarrow
- $((P \lor \neg Q) \rightarrow P)$ is in none of the normal forms P

- $((P \vee \neg Q) \wedge P)$ is in NNF and CNF
- $((R \vee Q) \wedge P \wedge (R \vee S))$ is in NNF and CNF
- $(P \vee (\neg Q \wedge R))$ is in NNF and DNF
- $(P \vee \neg \neg Q)$ is in none of the normal forms
- $(P \rightarrow \neg Q)$ is in none of the normal forms, but is in all three after expanding \rightarrow
- $((P \lor \neg Q) \rightarrow P)$ is in none of the normal forms
- P is in NNF. CNF and DNF

Construction of CNF (and DNF)

Algorithm to Construct CNF

First, convert to NNF (steps 1–3). ⇝ formula structure: only literals, ∨, ∧ \bullet Repeatedly apply distributivity or commutativity $+$ distributivity to distribute ∨ over ∧: Replace $(\varphi \vee (\psi \wedge \chi))$ by $((\varphi \vee \psi) \wedge (\varphi \vee \chi))$. Replace $((\psi \wedge \chi) \vee \varphi)$ by $((\psi \vee \varphi) \wedge (\chi \vee \varphi))$. \rightsquigarrow formula structure: CNF **E** optionally: Simplify the formula at the end

or at intermediate steps (e. g., with idempotence).

Note: For DNF, swap the roles of \land and \lor in Step 4.

Construction of Conjunctive Normal Form

Construction of Conjunctive Normal Form

Given: $\varphi = (((P \land \neg Q) \lor R) \rightarrow (P \lor \neg (S \lor T)))$

 $\varphi \equiv (((\neg P \vee Q) \wedge \neg R) \vee P \vee (\neg S \wedge \neg T))$ [to NNF]

Construction of Conjunctive Normal Form

$$
\varphi \equiv (((\neg P \lor Q) \land \neg R) \lor P \lor (\neg S \land \neg T)) \text{ [to NNF]}
$$

$$
\equiv ((\neg P \lor Q \lor P \lor (\neg S \land \neg T)) \land
$$

$$
(\neg R \lor P \lor (\neg S \land \neg T))) \qquad \text{[Step 4]}
$$

Construction of Conjunctive Normal Form

$$
\varphi \equiv (((\neg P \lor Q) \land \neg R) \lor P \lor (\neg S \land \neg T))
$$
[to NNF]
\n
$$
\equiv ((\neg P \lor Q \lor P \lor (\neg S \land \neg T)) \land
$$

\n
$$
(\neg R \lor P \lor (\neg S \land \neg T)))
$$
[Step 4]
\n
$$
\equiv (\neg R \lor P \lor (\neg S \land \neg T))
$$
[Step 5]

Construction of Conjunctive Normal Form

$$
\varphi \equiv (((\neg P \lor Q) \land \neg R) \lor P \lor (\neg S \land \neg T))
$$
[to NNF]
\n
$$
\equiv ((\neg P \lor Q \lor P \lor (\neg S \land \neg T)) \land
$$

\n
$$
(\neg R \lor P \lor (\neg S \land \neg T)))
$$
[Step 4]
\n
$$
\equiv (\neg R \lor P \lor (\neg S \land \neg T))
$$
[Step 5]
\n
$$
\equiv ((\neg R \lor P \lor \neg S) \land (\neg R \lor P \lor \neg T))
$$
[Step 4]

Construct DNF: Example

Construction of Disjunctive Normal Form

$$
\varphi \equiv (((\neg P \lor Q) \land \neg R) \lor P \lor (\neg S \land \neg T))
$$
 [to NNF]

$$
\equiv ((\neg P \land \neg R) \lor (Q \land \neg R) \lor P \lor (\neg S \land \neg T))
$$
 [Step 4]

Existence of an Equivalent Formula in Normal Form

Theorem

For every formula φ there is a logically equivalent formula in NNF, a logically equivalent formula in CNF and a logically equivalent formula in DNF.

- \blacksquare "There is a" always means "there is at least one". Otherwise we would write "there is exactly one".
- Intuition: algorithms to construct normal forms work with any given formula and only use equivalence rewriting.
- **Executed** actual proof would use induction over structure of formula

Size of Normal Forms

- \blacksquare In the worst case, a logically equivalent formula in CNF or DNF can be exponentially larger than the original formula.
- **■** Example: for $(x_1 \vee y_1) \wedge \cdots \wedge (x_n \vee y_n)$ there is no smaller logically equivalent formula in DNF than:

$$
\bigvee_{S \in \mathcal{P}(\{1,\ldots,n\})} \left(\bigwedge_{i \in S} x_i \wedge \bigwedge_{i \in \{1,\ldots,n\} \setminus S} y_i \right)
$$

- As a consequence, the construction of the CNF/DNF formula can take exponential time.
- For NNF, we can generate an equivalent formula in linear time if the original formula does not use \leftrightarrow .

More Theorems

Theorem

A formula in CNF is a tautology iff every clause is a tautology.

Theorem

A formula in DNF is satisfiable iff at least one of its monomials is satisfiable.

 \rightarrow both proved easily with semantics of propositional logic

[Knowledge Bases](#page-56-0)

Knowledge Bases: Example

If not DrinkBeer, then EatFish. If EatFish and DrinkBeer, then not EatIceCream. If EatIceCream or not DrinkBeer, then not EatFish.

$$
\mathsf{KB} = \{ (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{ExtFish}),
$$

((\mathsf{ExtFish} \land \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatLeeCream}),
((\mathsf{EatLeeCream} \lor \neg \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{ExtFish}) \}

Exercise from U. Schöning: Logik für Informatiker Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

Models for Sets of Formulas

Definition (Model for Knowledge Base)

Let KB be a knowledge base over A,

i. e., a set of propositional formulas over A.

A truth assignment $\mathcal I$ for A is a model for KB (written: $\mathcal I \models \sf{KB}$) if $\mathcal I$ is a model for every formula $\varphi \in \mathsf{KB}$.

German: Wissensbasis, Modell

Properties of Sets of Formulas

- A knowledge base KB is
	- satisfiable if KB has at least one model
	- unsatisfiable if KB is not satisfiable
	- valid (or a tautology) if every interpretation is a model for KB
	- **s** falsifiable if KB is no tautology

German: erfüllbar, unerfüllbar, gültig, gültig/eine Tautologie, falsifizierbar

Example I

Which of the properties does $KB = \{(A \land \neg B), \neg (B \lor A)\}\)$ have?

Example I

Which of the properties does $KB = \{(A \land \neg B), \neg (B \lor A)\}\)$ have?

KB is unsatisfiable:

For every model $\mathcal I$ with $\mathcal I \models (A \land \neg B)$ we have $\mathcal I(A) = 1$. This means $\mathcal{I} \models (\mathsf{B} \vee \mathsf{A})$ and thus $\mathcal{I} \not\models \neg(\mathsf{B} \vee \mathsf{A})$.

This directly implies that KB is falsifiable, not satisfiable and no tautology.

Example II

Which of the properties does

$$
\mathsf{KB} = \{ (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{ExtFish}), \\ ((\mathsf{ExtFish} \land \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatLeeCream}), \\ ((\mathsf{EatLeeCream} \lor \neg \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{ExtFish}) \} \mathsf{have?}
$$

Example II

Which of the properties does

$$
\mathsf{KB} = \{ (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{ExtFish}), \\ ((\mathsf{ExtFish} \land \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatLeeCream}), \\ ((\mathsf{EatLeeCream} \lor \neg \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{ExtFish}) \} \mathsf{have?}
$$

- satisfiable, e.g. with $\mathcal{I} = \{\textsf{EatFish} \mapsto 1, \textsf{DrinkBeer} \mapsto 1, \textsf{EatLeeCream} \mapsto 0\}$
- **thus not unsatisfiable**
- **falsifiable**, e.g. with $\mathcal{I} = \{\textsf{EstFish} \mapsto 0, \textsf{DrinkBeer} \mapsto 0, \textsf{EatLeeCream} \mapsto 1\}$
- thus not valid

[Logical Consequences](#page-64-0)

Logical Consequences: Motivation

What's the secret of your long life?

I am on a strict diet: If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

Claim: the woman drinks beer to every meal.

How can we prove this?

Exercise from U. Schöning: Logik für Informatiker Picture courtesy of graur razvan ionut/FreeDigitalPhotos.net

Logical Consequences

Definition (Logical Consequence)

Let KB be a set of formulas and φ a formula.

```
We say that KB logically implies \varphi (written as KB \models \varphi)
if all models of KB are also models of \varphi.
```
also: KB logically entails φ , φ logically follows from KB, φ is a logical consequence of KB

German: KB impliziert φ logisch, φ folgt logisch aus KB, φ ist logische Konsequenz von KB

Attention: the symbol \models is "overloaded": $KB \models \varphi$ vs. $\mathcal{I} \models \varphi$.

What if KB is unsatisfiable or the empty set?

Logical Consequences: Example

```
Let \varphi = DrinkBeer and
```

$$
\mathsf{KB} = \{ (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{ExtFish}), \\ ((\mathsf{ExtFish} \land \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatLeeCream}), \\ ((\mathsf{EatLeeCream} \lor \neg \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{ExtFish}) \}.
$$

Show: $KB \models \varphi$

Logical Consequences: Example

```
Let \varphi = DrinkBeer and
```

$$
\mathsf{KB} = \{ (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{ExtFish}), \\ ((\mathsf{ExtFish} \land \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatLeeCream}), \\ ((\mathsf{EatLeeCream} \lor \neg \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatFish}) \}.
$$

Show: $KB \models \varphi$

Proof sketch.

Proof by contradiction: assume $\mathcal{I} \models \mathsf{KB}$, but $\mathcal{I} \not\models \mathsf{DrinkBeer}$. Then it follows that $\mathcal{I} \models \neg \textsf{DrinkBeer}.$ Because I is a model of KB, we also have $\mathcal{I} \models (\neg \textsf{DrinkBeer} \rightarrow \textsf{ExtFish})$ and thus $\mathcal{I} \models \textsf{ExtFish}.$ (Why?) With an analogous argumentation starting from $\mathcal{I} \models$ ((EatIceCream $\vee \neg$ DrinkBeer) $\rightarrow \neg$ EatFish) we get $\mathcal{I} \models \neg$ EatFish and thus $\mathcal{I} \not\models$ EatFish. \leadsto Contradiction!

Important Theorems about Logical Consequences

 $KB \cup {\varphi} \models \psi$ iff $KB \models (\varphi \rightarrow \psi)$

German: Deduktionssatz

Theorem (Contraposition Theorem)

 $KB \cup {\varphi} \models \neg \psi$ iff $KB \cup {\psi} \models \neg \varphi$

German: Kontrapositionssatz

Theorem (Contradiction Theorem)

 $KB \cup {\varphi}$ is unsatisfiable iff $KB \models \neg \varphi$

German: Widerlegungssatz

(without proof)