Discrete Mathematics in Computer Science D3. Normal Forms and Logical Consequence

Malte Helmert, Gabriele Röger

University of Basel

December 2/4, 2024

M. Helmert, G. Röger (University of Basel) [Discrete Mathematics in Computer Science](#page-35-0) December 2/4, 2024 1 / 36

Discrete Mathematics in Computer Science December 2/4, 2024 — D3. Normal Forms and Logical Consequence

D3.1 [Simplified Notation](#page-2-0)

D_{3.2} [Normal Forms](#page-9-0)

D3.3 [Knowledge Bases](#page-25-0)

D3.4 [Logical Consequences](#page-31-0)

M. Helmert, G. Röger (University of Basel) [Discrete Mathematics in Computer Science](#page-0-0) December 2/4, 2024 2 / 36

D3.1 [Simplified Notation](#page-2-0)

D3. Normal Forms and Logical Consequence [Simplified Notation](#page-2-0) Simplified Notation

Parentheses

Associativity:

$$
((\varphi \land \psi) \land \chi) \equiv (\varphi \land (\psi \land \chi))
$$

$$
((\varphi \lor \psi) \lor \chi) \equiv (\varphi \lor (\psi \lor \chi))
$$

- ▶ Placement of parentheses for a conjunction of conjunctions does not influence whether an interpretation is a model.
- \blacktriangleright ditto for disjunctions of disjunctions
- \rightarrow can omit parentheses and treat this as if parentheses placed arbitrarily
- ▶ Example: $(A_1 \land A_2 \land A_3 \land A_4)$ instead of $((A_1 \wedge (A_2 \wedge A_3)) \wedge A_4)$
- ▶ Example: $(\neg A \lor (B \land C) \lor D)$ instead of $((\neg A \lor (B \land C)) \lor D)$

Parentheses

Does this mean we can always omit all parentheses and assume an arbitrary placement? \rightsquigarrow No!

$$
((\varphi \wedge \psi) \vee \chi) \not\equiv (\varphi \wedge (\psi \vee \chi))
$$

What should $\varphi \land \psi \lor \chi$ mean?

Placement of Parentheses by Convention

Often parentheses can be dropped in specific cases and an *implicit* placement is assumed:

- \blacktriangleright \neg binds more strongly than \wedge
- ▶ ∧ binds more strongly than ∨
- ▶ \vee binds more strongly than \rightarrow or \leftrightarrow

 \rightsquigarrow cf. PEMDAS/ "Punkt vor Strich"

Example

A $\vee \neg C \wedge B \rightarrow A \vee \neg D$ stands for $((A \vee (\neg C \wedge B)) \rightarrow (A \vee \neg D))$

- ▶ often harder to read
- ▶ error-prone
- \rightarrow not used in this course

D3. Normal Forms and Logical Consequence [Simplified Notation](#page-2-0) Simplified Notation

Short Notations for Conjunctions and Disjunctions

Short notation for addition:

$$
\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n
$$

$$
\sum_{x \in \{x_1, \dots, x_n\}} x = x_1 + x_2 + \dots + x_n
$$

Analogously:

$$
\bigwedge_{i=1}^{n} \varphi_{i} = (\varphi_{1} \land \varphi_{2} \land \cdots \land \varphi_{n})
$$

$$
\bigvee_{i=1}^{n} \varphi_{i} = (\varphi_{1} \lor \varphi_{2} \lor \cdots \lor \varphi_{n})
$$

$$
\bigwedge_{\varphi \in X} \varphi = (\varphi_{1} \land \varphi_{2} \land \cdots \land \varphi_{n})
$$

$$
\bigvee_{\varphi \in X} \varphi = (\varphi_{1} \lor \varphi_{2} \lor \cdots \lor \varphi_{n})
$$

for $X = {\varphi_{1}, \ldots, \varphi_{n}}$

Short Notation: Corner Cases

Is $\mathcal{I} \models \psi$ true for

$$
\psi = \bigwedge\nolimits_{\varphi \in X} \varphi \text{ and } \psi = \bigvee\nolimits_{\varphi \in X} \varphi
$$

if $X = \emptyset$ or $X = \{\chi\}$?

convention:

\n- $$
\bigwedge_{\varphi \in \emptyset} \varphi
$$
 is a tautology.
\n- $\bigvee_{\varphi \in \emptyset} \varphi$ is unsatisfiable.
\n- $\bigwedge_{\varphi \in \{\chi\}} \varphi = \bigvee_{\varphi \in \{\chi\}} \varphi = \chi$
\n

\rightsquigarrow Why?

Express $\bigwedge_{i=1}^2 \bigvee_{j=1}^3 \varphi_{ij}$ without \bigwedge and \bigvee .

D3.2 [Normal Forms](#page-9-0)

M. Helmert, G. Röger (University of Basel) [Discrete Mathematics in Computer Science](#page-0-0) December 2/4, 2024 10 / 36

Why Normal Forms?

- \blacktriangleright A normal form is a representation with certain syntactic restrictions.
- ▶ condition for reasonable normal form: every formula must have a logically equivalent formula in normal form
- ▶ advantages:
	- ▶ can restrict proofs to formulas in normal form
	- ▶ can define algorithms to work only for formulas in normal form
- German: Normalform

Negation Normal Form

Definition (Negation Normal Form)

A formula is in negation normal form (NNF)

if it does not contain the abbreviations \rightarrow and \leftrightarrow and if it contains no negation symbols except possibly directly in front of atomic propositions.

German: Negationsnormalform

Example $((\neg P \lor (R \land Q)) \land (P \lor \neg S))$ is in NNF. $(P \wedge \neg (Q \vee R))$ is not in NNF.

M. Helmert. G. Röger (University of Basel) [Discrete Mathematics in Computer Science](#page-0-0) December 2/4, 2024 12 / 36

Construction of NNF

Algorithm to Construct NNF

- **1** Replace abbreviation \leftrightarrow by its definition ((\leftrightarrow) -elimination). \rightarrow formula structure: only \neg , \vee , \wedge , \rightarrow
- 2 Replace abbreviation \rightarrow by its definition ((\rightarrow)-elimination). ⇝ formula structure: only ¬, ∨, ∧
- **3** Repeatedly apply double negation and De Morgan rules until no rules match any more ("move negations inside"):
	- Replace $\neg\neg\varphi$ by φ .
	- ▶ Replace $\neg(\varphi \land \psi)$ by $(\neg \varphi \lor \neg \psi)$.
	- ▶ Replace $\neg(\varphi \lor \psi)$ by $(\neg \varphi \land \neg \psi)$.

 \rightarrow formula structure: only atoms, negated atoms, \vee , \wedge

Constructing NNF: Example

Construction of Negation Normal Form Given: $\varphi = (((P \land \neg Q) \lor R) \rightarrow (P \lor \neg (S \lor T)))$ $\varphi \equiv (\neg ((P \land \neg Q) \lor R) \lor P \lor \neg (S \lor T))$ [Step 2] $\equiv ((\neg (P \land \neg Q) \land \neg R) \lor P \lor \neg (S \lor T))$ [Step 3] $\equiv (((\neg P \vee \neg \neg Q) \wedge \neg R) \vee P \vee \neg (S \vee T))$ [Step 3] $\equiv (((\neg P \vee Q) \wedge \neg R) \vee P \vee \neg (S \vee T))$ [Step 3] $\equiv (((\neg P \vee Q) \wedge \neg R) \vee P \vee (\neg S \wedge \neg T))$ [Step 3] D3. [Normal Forms](#page-9-0) and Logical Consequence Normal Forms and Decision of the Normal Forms and Forms and Forms and Forms and Forms and \mathbb{R}

Literals, Clauses and Monomials

- \blacktriangleright A literal is an atomic proposition or the negation of an atomic proposition (e.g., A and $\neg A$).
- ▶ A clause is a disjunction of literals $(e.g., (Q \vee \neg P \vee \neg S \vee R)).$
- ▶ A monomial is a conjunction of literals $(e.g., (Q \wedge \neg P \wedge \neg S \wedge R)).$

The terms clause and monomial are also used for the corner case with only one literal.

German: Literal, Klausel, Monom

Terminology: Examples

Examples

- \blacktriangleright (\neg Q \land R) is a monomial
- ▶ (P $\vee \neg Q$) is a clause
- ▶ $((P \lor \neg Q) \land P)$ is neither literal nor clause nor monomial
- $\blacktriangleright \neg P$ is a literal, a clause and a monomial
- \triangleright (P \rightarrow Q) is neither literal nor clause nor monomial (but $(\neg P \lor Q)$ is a clause!)
- ▶ (P ∨ P) is a clause, but not a literal or monomial
- \blacktriangleright $\neg\neg$ P is neither literal nor clause nor monomial

M. Helmert. G. Röger (University of Basel) [Discrete Mathematics in Computer Science](#page-0-0) December 2/4, 2024 16 / 36

Conjunctive Normal Form

Definition (Conjunctive Normal Form) A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses, i. e., if it has the form $\bigwedge^n\bigvee^{m_i}L_{ij}$ $i=1$ $j=1$ with n, $m_i > 0$ (for $1 \le i \le n$), where the L_{ii} are literals.

German: konjunktive Normalform (KNF)

Example $((\neg P \lor Q) \land R \land (P \lor \neg S))$ is in CNF.

Disjunctive Normal Form

Definition (Disjunctive Normal Form) A formula is in disjunctive normal form (DNF) if it is a disjunction of monomials, i. e., if it has the form $\bigvee^n\bigwedge^{m_i}L_{ij}$ $i = 1$ j=1 with n, $m_i > 0$ (for $1 \le i \le n$), where the L_{ii} are literals.

German: disjunktive Normalform (DNF)

Example $((\neg P \land Q) \lor R \lor (P \land \neg S))$ is in DNF.

NNF, CNF and DNF: Examples

Which of the following formulas are in NNF? Which are in CNF? Which are in DNF?

- ▶ ($(P \vee \neg Q) \wedge P$) is in NNF and CNF
- ▶ $((R \vee Q) \wedge P \wedge (R \vee S))$ is in NNF and CNF
- ▶ $(P \vee (\neg Q \wedge R))$ is in NNF and DNF
- ▶ $(P \vee \neg \neg Q)$ is in none of the normal forms
- ▶ $(P \rightarrow \neg Q)$ is in none of the normal forms, but is in all three after expanding \rightarrow
- ▶ $((P \lor \neg Q) \rightarrow P)$ is in none of the normal forms
- ▶ P is in NNF, CNF and DNF

D3. [Normal Forms](#page-9-0) and Logical Consequence Normal Forms and Day and The Consequence Normal Forms and Horms and Hor

Construction of CNF (and DNF)

Note: For DNF, swap the roles of \land and \lor in Step 4.

M. Helmert, G. Röger (University of Basel) [Discrete Mathematics in Computer Science](#page-0-0) December 2/4, 2024 20 / 36

Constructing CNF: Example

Construction of Conjunctive Normal Form Given: $\varphi = (((P \land \neg Q) \lor R) \rightarrow (P \lor \neg (S \lor T)))$ $\varphi \equiv ((\neg P \vee Q) \wedge \neg R) \vee P \vee (\neg S \wedge \neg T))$ [to NNF] $\equiv ((\neg P \vee Q \vee P \vee (\neg S \wedge \neg T)) \wedge$ $(\neg R \lor P \lor (\neg S \land \neg T)))$ [Step 4] $\equiv (\neg R \lor P \lor (\neg S \land \neg T))$ [Step 5] $\equiv ((\neg R \vee P \vee \neg S) \wedge (\neg R \vee P \vee \neg T))$ [Step 4]

M. Helmert, G. Röger (University of Basel) [Discrete Mathematics in Computer Science](#page-0-0) December 2/4, 2024 21 / 36

Construct DNF: Example

Construction of Disjunctive Normal Form

\nGiven:
$$
\varphi = (((P \land \neg Q) \lor R) \rightarrow (P \lor \neg(S \lor T)))
$$

\n
$$
\varphi \equiv (((\neg P \lor Q) \land \neg R) \lor P \lor (\neg S \land \neg T))
$$
 [to NNF]

\n
$$
\equiv ((\neg P \land \neg R) \lor (Q \land \neg R) \lor P \lor (\neg S \land \neg T))
$$
 [Step 4]

M. Helmert, G. Röger (University of Basel) [Discrete Mathematics in Computer Science](#page-0-0) December 2/4, 2024 22 / 36

Existence of an Equivalent Formula in Normal Form

Theorem

For every formula φ there is a logically equivalent formula in NNF, a logically equivalent formula in CNF and a logically equivalent formula in DNF.

- \blacktriangleright "There is a" always means "there is at least one". Otherwise we would write "there is exactly one".
- ▶ Intuition: algorithms to construct normal forms work with any given formula and only use equivalence rewriting.
- ▶ actual proof would use induction over structure of formula

Size of Normal Forms

- ▶ In the worst case, a logically equivalent formula in CNF or DNF can be exponentially larger than the original formula.
- ▶ Example: for $(x_1 \vee y_1) \wedge \cdots \wedge (x_n \vee y_n)$ there is no smaller logically equivalent formula in DNF than:

$$
\bigvee_{S \in \mathcal{P}(\{1,\ldots,n\})} \left(\bigwedge_{i \in S} x_i \wedge \bigwedge_{i \in \{1,\ldots,n\} \setminus S} y_i \right)
$$

- \triangleright As a consequence, the construction of the CNF/DNF formula can take exponential time.
- ▶ For NNF, we can generate an equivalent formula in linear time if the original formula does not use \leftrightarrow .

More Theorems

Theorem

A formula in CNF is a tautology iff every clause is a tautology.

Theorem

A formula in DNF is satisfiable iff at least one of its monomials is satisfiable.

 \rightarrow both proved easily with semantics of propositional logic

D3.3 [Knowledge Bases](#page-25-0)

D3. Normal Forms and Logical Consequence [Knowledge Bases](#page-25-0) and the Unit of the Annual Town of the Knowledge Bases

Knowledge Bases: Example

If not DrinkBeer, then EatFish. If EatFish and DrinkBeer, then not EatIceCream. If EatIceCream or not DrinkBeer, then not EatFish.

$$
\mathsf{KB} = \{ (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{ExtFish}), \\ ((\mathsf{ExtFish} \land \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatLeeCream}), \\ ((\mathsf{EatLeeCream} \lor \neg \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{ExtFish}) \}
$$

Exercise from U. Schöning: Logik für Informatiker Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

M. Helmert, G. Röger (University of Basel) [Discrete Mathematics in Computer Science](#page-0-0) December 2/4, 2024 27 / 36

Models for Sets of Formulas

Definition (Model for Knowledge Base) Let KB be a knowledge base over A, i. e., a set of propositional formulas over A. A truth assignment $\mathcal I$ for A is a model for KB (written: $\mathcal I \models \mathsf{KB}$) if $\mathcal I$ is a model for every formula $\varphi \in \mathsf{KB}$.

German: Wissensbasis, Modell

D3. Normal Forms and Logical Consequence [Knowledge Bases](#page-25-0) and the Unit of the Knowledge Bases

Properties of Sets of Formulas

A knowledge base KB is

- \triangleright satisfiable if KB has at least one model
- \blacktriangleright unsatisfiable if KB is not satisfiable
- \triangleright valid (or a tautology) if every interpretation is a model for KB
- \blacktriangleright falsifiable if KB is no tautology

German: erfüllbar, unerfüllbar, gültig, gültig/eine Tautologie, falsifizierbar

Example I

Which of the properties does $KB = \{(A \land \neg B), \neg (B \lor A)\}\)$ have?

KB is unsatisfiable:

For every model $\mathcal I$ with $\mathcal I \models (A \land \neg B)$ we have $\mathcal I(A) = 1$. This means $\mathcal{I} \models (\mathsf{B} \lor \mathsf{A})$ and thus $\mathcal{I} \not\models \neg(\mathsf{B} \lor \mathsf{A})$.

This directly implies that KB is falsifiable, not satisfiable and no tautology.

Example II

Which of the properties does

$$
\mathsf{KB} = \{ (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{ExtFish}), \\ ((\mathsf{ExtFish} \land \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatLeeCream}), \\ ((\mathsf{EatLeeCream} \lor \neg \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatFish}) \} \mathsf{have?}
$$

$$
\begin{array}{l} \text{\bf \texttt{Satisfiable, e.g. with}}\\ \mathcal{I} = \{\text{EatFish} \mapsto 1, \text{DrinkBeer} \mapsto 1, \text{EatlecCream} \mapsto 0\} \end{array}
$$

- \blacktriangleright thus not unsatisfiable
- \blacktriangleright falsifiable, e.g. with $\mathcal{I} = \{\textsf{EstFish} \mapsto 0, \textsf{DrinkBeer} \mapsto 0, \textsf{EatLeeCream} \mapsto 1\}$

\blacktriangleright thus not valid

D3.4 [Logical Consequences](#page-31-0)

D3. Normal Forms and Logical Consequence **[Logical Consequences](#page-31-0)** Logical Consequences

Logical Consequences: Motivation

What's the secret of your long life?

I am on a strict diet: If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

Claim: the woman drinks beer to every meal.

How can we prove this?

Exercise from U. Schöning: Logik für Informatiker Picture courtesy of graur razvan ionut/FreeDigitalPhotos.net

M. Helmert, G. Röger (University of Basel) [Discrete Mathematics in Computer Science](#page-0-0) December 2/4, 2024 33 / 36

Logical Consequences

Definition (Logical Consequence)

```
Let KB be a set of formulas and \varphi a formula.
```

```
We say that KB logically implies \varphi (written as KB \models \varphi)
if all models of KB are also models of \varphi.
```
also: KB logically entails φ , φ logically follows from KB, φ is a logical consequence of KB

German: KB impliziert φ logisch, φ folgt logisch aus KB, φ ist logische Konsequenz von KB

Attention: the symbol \models is "overloaded": $KB \models \varphi$ vs. $\mathcal{I} \models \varphi$.

What if KB is unsatisfiable or the empty set?

D3. Normal Forms and Logical Consequence **[Logical Consequences](#page-31-0)** Logical Consequences

Logical Consequences: Example

```
Let \varphi = DrinkBeer and
```

```
KB = \{ (\neg \text{DrinkBeer} \rightarrow \text{ExtFish})\},\((\mathsf{EatFish} \wedge \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatICECream}),((\mathsf{EatIceCream <math>\vee \neg \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{ExtFish}).
```

```
Show: KB \models \varphi
```

```
Proof sketch.
Proof by contradiction: assume \mathcal{I} \models \mathsf{KB}, but \mathcal{I} \not\models \mathsf{DrinkBeer}.
Then it follows that \mathcal{I} \models \negDrinkBeer.
Because \mathcal I is a model of KB, we also have
\mathcal{I} \models (\neg \textsf{DrinkBeer} \rightarrow \textsf{ExtFish}) and thus \mathcal{I} \models \textsf{ExtFish}. (Why?)
With an analogous argumentation starting from
\mathcal{I} \models ((EatIceCream \vee \negDrinkBeer) \rightarrow \negEatFish)
we get \mathcal{I} \models \negEatFish and thus \mathcal{I} \not\models EatFish. \leadsto Contradiction!
```
Important Theorems about Logical Consequences

Theorem (Deduction Theorem) $KB \cup \{\varphi\} \models \psi$ iff $KB \models (\varphi \rightarrow \psi)$

German: Deduktionssatz

```
Theorem (Contraposition Theorem)
KB \cup \{\varphi\} \models \neg \psi iff KB \cup \{\psi\} \models \neg \varphi
```
German: Kontrapositionssatz

Theorem (Contradiction Theorem)

 $KB \cup \{\varphi\}$ is unsatisfiable iff $KB \models \neg \varphi$

German: Widerlegungssatz

(without proof)