Discrete Mathematics in Computer Science D2. Properties of Formulas and Equivalences

Malte Helmert, Gabriele Röger

University of Basel

November 25/27, 2024

Properties of Propositional Formulas

The Story So Far

- propositional logic based on atomic propositions
- syntax: which formulas are well-formed?
- semantics: when is a formula true?
- interpretations: important basis of semantics

Reminder: Syntax of Propositional Logic

Definition (Syntax of Propositional Logic)

Let A be a set of atomic propositions. The set of propositional formulas (over A) is inductively defined as follows:

- Every atom $a \in A$ is a propositional formula over A.
- If φ is a propositional formula over A, then so is its negation ¬φ.
- If φ and ψ are propositional formulas over A, then so is the conjunction (φ ∧ ψ).
- If φ and ψ are propositional formulas over A, then so is the disjunction (φ ∨ ψ).

The implication $(\varphi \to \psi)$ is an abbreviation for $(\neg \varphi \lor \psi)$. The biconditional $(\varphi \leftrightarrow \psi)$ is an abbrev. for $((\varphi \to \psi) \land (\psi \to \varphi))$.

Reminder: Semantics of Propositional Logic

Definition (Semantics of Propositional Logic)

A truth assignment (or interpretation) for a set of atomic propositions A is a function $\mathcal{I} : A \to \{0, 1\}$.

A propositional formula φ (over A) holds under \mathcal{I} (written as $\mathcal{I} \models \varphi$) according to the following definition:

$$\begin{array}{lll} \mathcal{I} \models a & \text{iff} & \mathcal{I}(a) = 1 & (\text{for } a \in A) \\ \mathcal{I} \models \neg \varphi & \text{iff} & \text{not } \mathcal{I} \models \varphi \\ \mathcal{I} \models (\varphi \land \psi) & \text{iff} & \mathcal{I} \models \varphi \text{ and } \mathcal{I} \models \psi \\ \mathcal{I} \models (\varphi \lor \psi) & \text{iff} & \mathcal{I} \models \varphi \text{ or } \mathcal{I} \models \psi \end{array}$$

Properties of Propositional Formulas

- A propositional formula φ is
 - **satisfiable** if φ has at least one model
 - unsatisfiable if φ is not satisfiable
 - **valid** (or a tautology) if φ is true under every interpretation
 - **falsifiable** if φ is no tautology

German: erfüllbar, unerfüllbar, allgemeingültig/eine Tautologie, falsifizierbar

How can we show that a formula has one of these properties?

• Show that $(A \land B)$ is satisfiable.

How can we show that a formula has one of these properties?

• Show that $(A \land B)$ is satisfiable.

 $\mathcal{I} = \{A \mapsto 1, B \mapsto 1\} \ (+ \text{ simple proof that } \mathcal{I} \models (A \land B))$

How can we show that a formula has one of these properties?

Show that $(A \land B)$ is satisfiable. $\mathcal{I} = \{A \mapsto 1, B \mapsto 1\}$ (+ simple proof that $\mathcal{I} \models (A \land B)$)

• Show that $(A \land B)$ is falsifiable.

How can we show that a formula has one of these properties?

Show that $(A \land B)$ is satisfiable. $\mathcal{I} = \{A \mapsto 1, B \mapsto 1\}$ (+ simple proof that $\mathcal{I} \models (A \land B)$)

Show that $(A \land B)$ is falsifiable.

 $\mathcal{I} = \{\mathsf{A} \mapsto \mathsf{0}, \mathsf{B} \mapsto 1\} \ (+ \text{ simple proof that } \mathcal{I} \not\models (\mathsf{A} \land \mathsf{B}))$

- Show that $(A \land B)$ is satisfiable. $\mathcal{I} = \{A \mapsto 1, B \mapsto 1\}$ (+ simple proof that $\mathcal{I} \models (A \land B)$)
- Show that $(A \land B)$ is falsifiable. $\mathcal{I} = \{A \mapsto 0, B \mapsto 1\}$ (+ simple proof that $\mathcal{I} \not\models (A \land B)$)
- Show that $(A \land B)$ is not valid.

- Show that $(A \land B)$ is satisfiable. $\mathcal{I} = \{A \mapsto 1, B \mapsto 1\}$ (+ simple proof that $\mathcal{I} \models (A \land B)$)
- Show that $(A \land B)$ is falsifiable. $\mathcal{I} = \{A \mapsto 0, B \mapsto 1\}$ (+ simple proof that $\mathcal{I} \not\models (A \land B)$)
- Show that (A ∧ B) is not valid. Follows directly from falsifiability.

- Show that $(A \land B)$ is satisfiable. $\mathcal{I} = \{A \mapsto 1, B \mapsto 1\}$ (+ simple proof that $\mathcal{I} \models (A \land B)$)
- Show that $(A \land B)$ is falsifiable. $\mathcal{I} = \{A \mapsto 0, B \mapsto 1\}$ (+ simple proof that $\mathcal{I} \not\models (A \land B)$)
- Show that (A ∧ B) is not valid. Follows directly from falsifiability.
- Show that $(A \land B)$ is not unsatisfiable.

- Show that $(A \land B)$ is satisfiable. $\mathcal{I} = \{A \mapsto 1, B \mapsto 1\}$ (+ simple proof that $\mathcal{I} \models (A \land B)$)
- Show that $(A \land B)$ is falsifiable. $\mathcal{I} = \{A \mapsto 0, B \mapsto 1\}$ (+ simple proof that $\mathcal{I} \not\models (A \land B)$)
- Show that (A ∧ B) is not valid. Follows directly from falsifiability.
- Show that (A ∧ B) is not unsatisfiable. Follows directly from satisfiability.

How can we show that a formula has one of these properties?

- Show that $(A \land B)$ is satisfiable. $\mathcal{I} = \{A \mapsto 1, B \mapsto 1\}$ (+ simple proof that $\mathcal{I} \models (A \land B)$)
- Show that $(A \land B)$ is falsifiable. $\mathcal{I} = \{A \mapsto 0, B \mapsto 1\}$ (+ simple proof that $\mathcal{I} \not\models (A \land B)$)
- Show that (A ∧ B) is not valid. Follows directly from falsifiability.
- Show that (A ∧ B) is not unsatisfiable. Follows directly from satisfiability.

So far all proofs by specifying one interpretation.

How to prove that a given formula is valid/unsatisfiable/ not satisfiable/not falsifiable?

 \rightsquigarrow must consider all possible interpretations

$$\begin{array}{c|c} \mathcal{I}(\mathsf{A}) & \mathcal{I} \models \neg \mathsf{A} \\ \hline 0 \\ 1 \\ \end{array}$$

$$\begin{array}{c|c}
\mathcal{I}(\mathsf{A}) & \mathcal{I} \models \neg \mathsf{A} \\
\hline
0 & \mathsf{Yes} \\
1 & \mathsf{No}
\end{array}$$



		$\mathcal{I}(A)$	$ \mathcal{I} \models \neg A$
		0	Yes
		1	No
$\mathcal{I}(A)$	$\mathcal{I}(B)$	$\mathcal{I} \models (A \land B)$	
0	0	No	
0	1	No	
1	0	No	
1	1	Yes	

		$\mathcal{I}(A)$	$\mathcal{I} \models \neg A$		
		0	Yes		
		1	No		
$\mathcal{I}(A)$	$\mathcal{I}(B)$	$\mathcal{I} \models (A \land B)$	$\mathcal{I}(A)$	$\mathcal{I}(B)$	$\mathcal{I} \models (A \lor B)$
0	0	No	0	0	No
0	1	No	0	1	Yes
1	0	No	1	0	Yes
1	1	Yes	1	1	Yes

Truth Tables in General

Similarly in the case where we consider a formula whose building blocks are themselves arbitrary unspecified formulas:

$\mathcal{I}\models\varphi$	$\mathcal{I} \models \psi$	$\mathcal{I} \models (\varphi \land \psi)$
No	No	No
No	Yes	No
Yes	No	No
Yes	Yes	Yes

Truth Tables for Properties of Formulas

Is $\varphi = ((A \rightarrow B) \lor (\neg B \rightarrow A))$ valid, unsatisfiable, . . . ?

$\mathcal{I}(A)$	$\mathcal{I}(B)$	$\mathcal{I} \models \neg B$	$\mathcal{I} \models (A ightarrow B)$	$\mathcal{I} \models (\neg B \rightarrow A)$	$\mathcal{I}\models\varphi$
0	0	Yes	Yes	No	Yes
0	1	No	Yes	Yes	Yes
1	0	Yes	No	Yes	Yes
1	1	No	Yes	Yes	Yes

Connection Between Formula Properties and Truth Tables

A propositional formula φ is

- satisfiable if φ has at least one model
 → result in at least one row is "Yes"
- unsatisfiable if φ is not satisfiable → result in all rows is "No"
- valid (or a tautology) if φ is true under every interpretation → result in all rows is "Yes"
- falsifiable if \u03c6 is no tautology \u2223 result in at least one row is "No"

Main Disadvantage of Truth Tables

How big is a truth table with n atomic propositions?

- 1 | 2 interpretations (rows)
- 2 4 interpretations (rows)
- 3 8 interpretations (rows)
- *n* ??? interpretations

Main Disadvantage of Truth Tables

How big is a truth table with n atomic propositions?

- 1 | 2 interpretations (rows)
- 2 4 interpretations (rows)
- 3 8 interpretations (rows)
- $n \mid 2^n$ interpretations

Some examples: $2^{10} = 1024$, $2^{20} = 1048576$, $2^{30} = 1073741824$

- \rightsquigarrow not viable for larger formulas; we need a different solution
 - more on difficulty of satisfiability etc.: Theory of Computer Science course
 - practical algorithms: Foundations of AI course

Equivalences

Equivalent Formulas

Definition (Equivalence of Propositional Formulas)

Two propositional formulas φ and ψ over A are (logically) equivalent ($\varphi \equiv \psi$) if for all interpretations \mathcal{I} for Ait is true that $\mathcal{I} \models \varphi$ if and only if $\mathcal{I} \models \psi$.

German: logisch äquivalent

Equivalent Formulas: Example

$$((\varphi \lor \psi) \lor \chi) \equiv (\varphi \lor (\psi \lor \chi))$$

$$\begin{aligned} (\varphi \land \varphi) &\equiv \varphi \\ (\varphi \lor \varphi) &\equiv \varphi \end{aligned}$$

(idempotence)

German: Idempotenz

$$\begin{split} (\varphi \land \varphi) &\equiv \varphi \\ (\varphi \lor \varphi) &\equiv \varphi & \text{(idempotence)} \\ (\varphi \land \psi) &\equiv (\psi \land \varphi) \\ (\varphi \lor \psi) &\equiv (\psi \lor \varphi) & \text{(commutativity)} \end{split}$$

German: Idempotenz, Kommutativität

$$\begin{aligned} (\varphi \land \varphi) &\equiv \varphi \\ (\varphi \lor \varphi) &\equiv \varphi & \text{(idempotence)} \\ (\varphi \land \psi) &\equiv (\psi \land \varphi) \\ (\varphi \lor \psi) &\equiv (\psi \lor \varphi) & \text{(commutativity)} \\ ((\varphi \land \psi) \land \chi) &\equiv (\varphi \land (\psi \land \chi)) \\ ((\varphi \lor \psi) \lor \chi) &\equiv (\varphi \lor (\psi \lor \chi)) & \text{(associativity)} \end{aligned}$$

German: Idempotenz, Kommutativität, Assoziativität

$$\begin{aligned} (\varphi \land (\varphi \lor \psi)) &\equiv \varphi \\ (\varphi \lor (\varphi \land \psi)) &\equiv \varphi \end{aligned}$$

(absorption)

German: Absorption

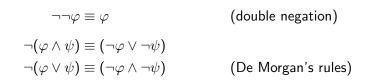
$$\begin{aligned} (\varphi \land (\varphi \lor \psi)) &\equiv \varphi \\ (\varphi \lor (\varphi \land \psi)) &\equiv \varphi \\ (\varphi \land (\psi \lor \chi)) &\equiv ((\varphi \land \psi) \lor (\varphi \land \chi)) \\ (\varphi \lor (\psi \land \chi)) &\equiv ((\varphi \lor \psi) \land (\varphi \lor \chi)) \quad \text{(distributivity)} \end{aligned}$$

German: Absorption, Distributivität

$$\neg\neg\varphi\equiv\varphi$$

(double negation)

German: Doppelnegation



German: Doppelnegation, De Morgansche Regeln

$$\neg \neg \varphi \equiv \varphi \qquad (\text{double negation})$$
$$\neg (\varphi \land \psi) \equiv (\neg \varphi \lor \neg \psi)$$
$$\neg (\varphi \lor \psi) \equiv (\neg \varphi \land \neg \psi) \qquad (\text{De Morgan's rules})$$
$$(\varphi \lor \psi) \equiv \varphi \text{ if } \varphi \text{ tautology}$$
$$(\varphi \land \psi) \equiv \psi \text{ if } \varphi \text{ tautology} \qquad (\text{tautology rules})$$

German: Doppelnegation, De Morgansche Regeln, Tautologieregeln

$$\neg \neg \varphi \equiv \varphi \qquad (\text{double negation})$$

$$\neg (\varphi \land \psi) \equiv (\neg \varphi \lor \neg \psi) \qquad (\text{De Morgan's rules})$$

$$(\varphi \lor \psi) \equiv \varphi \text{ if } \varphi \text{ tautology} \qquad (z \land \psi) \equiv \psi \text{ if } \varphi \text{ tautology} \qquad (z \land \psi) \equiv \psi \text{ if } \varphi \text{ tautology} \qquad (z \land \psi) \equiv \psi \text{ if } \varphi \text{ unsatisfiable} \qquad (\varphi \land \psi) \equiv \varphi \text{ if } \varphi \text{ unsatisfiable} \qquad (z \land \psi) \equiv \varphi \text{ if } \varphi \text{ unsatisfiable} \qquad (z \land \psi) \equiv \varphi \text{ if } \varphi \text{ unsatisfiable} \qquad (z \land \psi) \equiv \varphi \text{ if } \varphi \text{ unsatisfiable} \qquad (z \land \psi) \equiv \varphi \text{ if } \varphi \text{ unsatisfiable} \qquad (z \land \psi) \equiv \varphi \text{ if } \varphi \text{ unsatisfiable} \qquad (z \land \psi) \equiv \varphi \text{ if } \varphi \text{ unsatisfiable} \qquad (z \land \psi) \equiv \varphi \text{ if } \varphi \text{ unsatisfiable} \qquad (z \land \psi) \equiv \varphi \text{ if } \varphi \text{ unsatisfiable} \qquad (z \land \psi) \equiv \varphi \text{ if } \varphi \text{ unsatisfiable} \qquad (z \land \psi) \equiv \varphi \text{ if } \varphi \text{ unsatisfiable} \qquad (z \land \psi) = (z \land \psi) =$$

German: Doppelnegation, De Morgansche Regeln, Tautologieregeln, Unerfüllbarkeitsregeln

Substitution Theorem

Theorem (Substitution Theorem)

Let φ and φ' be equivalent propositional formulas over A. Let ψ be a propositional formula with (at least) one occurrence of the subformula φ .

Then ψ is equivalent to ψ' , where ψ' is constructed from ψ by replacing an occurrence of φ in ψ with φ' .

German: Ersetzbarkeitstheorem

(without proof)

Application of Equivalences: Example

$$(\mathsf{P} \land (\mathsf{Q} \lor \neg \mathsf{P})) \equiv ((\mathsf{P} \land \mathsf{Q}) \lor (\mathsf{P} \land \neg \mathsf{P})) \qquad (\mathsf{distributivity})$$

Application of Equivalences: Example

$$\begin{aligned} (\mathsf{P} \land (\mathsf{Q} \lor \neg \mathsf{P})) &\equiv ((\mathsf{P} \land \mathsf{Q}) \lor (\mathsf{P} \land \neg \mathsf{P})) & (\mathsf{distr} \\ &\equiv ((\mathsf{P} \land \neg \mathsf{P}) \lor (\mathsf{P} \land \mathsf{Q})) & (\mathsf{com} \end{aligned}$$

Application of Equivalences: Example

$$(P \land (Q \lor \neg P)) \equiv ((P \land Q) \lor (P \land \neg P))$$
$$\equiv ((P \land \neg P) \lor (P \land Q))$$
$$\equiv (P \land Q)$$

(distributivity) (commutativity) (unsatisfiability rule)