Discrete Mathematics in Computer Science D2. Properties of Formulas and Equivalences

Malte Helmert, Gabriele Röger

University of Basel

November 25/27, 2024

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

D2. Properties of Formulas and Equivalences

November 25/27, 2024

Properties of Propositional Formulas

Properties of Propositional Formulas

The Story So Far

D2.1 Properties of Propositional Formulas

Discrete Mathematics in Computer Science November 25/27, 2024 — D2. Properties of Formulas and Equivalences

D2.1 Properties of Propositional Formulas

D2.2 Equivalences

D2. Properties of Formulas and Equivalences

November 25/27, 2024

- propositional logic based on atomic propositions
- syntax: which formulas are well-formed?
- semantics: when is a formula true?

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

▶ interpretations: important basis of semantics

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

November 25/27, 2024

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

November 25/27, 2024

Properties of Propositional Formulas

Reminder: Semantics of Propositional Logic

Properties of Propositional Formulas

Reminder: Syntax of Propositional Logic

Definition (Syntax of Propositional Logic)

Let A be a set of atomic propositions. The set of propositional formulas (over A) is inductively defined as follows:

- ightharpoonup Every atom $a \in A$ is a propositional formula over A.
- \blacktriangleright If φ is a propositional formula over A, then so is its negation $\neg \varphi$.
- \blacktriangleright If φ and ψ are propositional formulas over A, then so is the conjunction $(\varphi \wedge \psi)$.
- \blacktriangleright If φ and ψ are propositional formulas over A, then so is the disjunction $(\varphi \lor \psi)$.

The implication $(\varphi \to \psi)$ is an abbreviation for $(\neg \varphi \lor \psi)$. The biconditional $(\varphi \leftrightarrow \psi)$ is an abbrev. for $((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$.

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

November 25/27, 2024

Definition (Semantics of Propositional Logic)

A truth assignment (or interpretation) for a set of atomic propositions A is a function $\mathcal{I}: A \to \{0, 1\}$.

A propositional formula φ (over A) holds under \mathcal{I} (written as $\mathcal{I} \models \varphi$) according to the following definition:

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

November 25/27, 2024

D2. Properties of Formulas and Equivalences

Properties of Propositional Formulas

Properties of Propositional Formulas

A propositional formula φ is

- ightharpoonup satisfiable if φ has at least one model
- ightharpoonup unsatisfiable if φ is not satisfiable
- \triangleright valid (or a tautology) if φ is true under every interpretation
- ightharpoonup falsifiable if φ is no tautology

German: erfüllbar, unerfüllbar, allgemeingültig/eine Tautologie, falsifizierbar

D2. Properties of Formulas and Equivalences

D2. Properties of Formulas and Equivalences

Properties of Propositional Formulas

Examples

How can we show that a formula has one of these properties?

ightharpoonup Show that (A \wedge B) is satisfiable.

$$\mathcal{I} = \{\mathsf{A} \mapsto \mathsf{1}, \mathsf{B} \mapsto \mathsf{1}\} \ \ \text{(+ simple proof that } \mathcal{I} \models (\mathsf{A} \land \mathsf{B})\text{)}$$

ightharpoonup Show that $(A \wedge B)$ is falsifiable.

$$\mathcal{I} = \{\mathsf{A} \mapsto \mathsf{0}, \mathsf{B} \mapsto \mathsf{1}\} \ \ \big(+ \ \mathsf{simple proof that} \ \mathcal{I} \not\models \big(\mathsf{A} \land \mathsf{B}\big) \big)$$

- ▶ Show that $(A \land B)$ is not valid. Follows directly from falsifiability.
- ightharpoonup Show that (A \wedge B) is not unsatisfiable. Follows directly from satisfiability.

So far all proofs by specifying one interpretation.

How to prove that a given formula is valid/unsatisfiable/ not satisfiable/not falsifiable?

→ must consider all possible interpretations

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

Truth Tables

Evaluate for all possible interpretations if they are models of the considered formula.

$$\begin{array}{c|c}
\mathcal{I}(\mathsf{A}) & \mathcal{I} \models \neg \mathsf{A} \\
\hline
0 & \mathsf{Yes} \\
1 & \mathsf{No}
\end{array}$$

$\mathcal{I}(A)$	$\mathcal{I}(B)$	$\mathcal{I} \models (A \land B)$	$\mathcal{I}(A)$	$\mathcal{I}(B)$	$\mathcal{I} \models (A \lor B)$
0	0	No	0	0	No
0	1	No	0	1	Yes
1	0	No	1	0	Yes
1	1	Yes	1	1	Yes

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

November 25/27, 2024

D2. Properties of Formulas and Equivalences

Properties of Propositional Formulas

Truth Tables for Properties of Formulas

Is $\varphi = ((A \to B) \lor (\neg B \to A))$ valid, unsatisfiable, ...?

D2. Properties of Formulas and Equivalences

Properties of Propositional Formulas

Truth Tables in General

Similarly in the case where we consider a formula whose building blocks are themselves arbitrary unspecified formulas:

$\mathcal{I} \models \varphi$	$\mathcal{I}\models\psi$	$\mathcal{I} \models (\varphi \wedge \psi)$
No	No	No
No	Yes	No
Yes	No	No
Yes	Yes	Yes

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

November 25/27, 2024

D2. Properties of Formulas and Equivalences

Properties of Propositional Formulas

Connection Between Formula Properties and Truth Tables

A propositional formula φ is

- \triangleright satisfiable if φ has at least one model → result in at least one row is "Yes"
- ightharpoonup unsatisfiable if φ is not satisfiable → result in all rows is "No"
- \triangleright valid (or a tautology) if φ is true under every interpretation → result in all rows is "Yes"
- ightharpoonup falsifiable if φ is no tautology → result in at least one row is "No"

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

November 25/27, 2024

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

Main Disadvantage of Truth Tables

How big is a truth table with n atomic propositions?

- 2 interpretations (rows)
- 4 interpretations (rows)
- 8 interpretations (rows)
- ??? interpretations

Some examples: $2^{10} = 1024$, $2^{20} = 1048576$, $2^{30} = 1073741824$

→ not viable for larger formulas; we need a different solution

- more on difficulty of satisfiability etc.: Theory of Computer Science course
- practical algorithms: Foundations of Al course

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

November 25/27, 2024

D2. Properties of Formulas and Equivalences

Equivalences

Equivalent Formulas

Definition (Equivalence of Propositional Formulas)

Two propositional formulas φ and ψ over A are (logically) equivalent $(\varphi \equiv \psi)$ if for all interpretations \mathcal{I} for Ait is true that $\mathcal{I} \models \varphi$ if and only if $\mathcal{I} \models \psi$.

German: logisch äquivalent

D2. Properties of Formulas and Equivalences

Equivalences

D2.2 Equivalences

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

D2. Properties of Formulas and Equivalences

Equivalent Formulas: Example

$$((\varphi \lor \psi) \lor \chi) \equiv (\varphi \lor (\psi \lor \chi))$$

$\mathcal{I} \models$	$\mathcal{I} \models$						
φ	ψ	χ	$(\varphi \lor \psi)$	$(\psi \lor \chi)$	$((\varphi \lor \psi) \lor \chi)$	$(\varphi \lor (\psi \lor \chi))$	
No	No	No	No	No	No	No	
No	No	Yes	No	Yes	Yes	Yes	
No	Yes	No	Yes	Yes	Yes	Yes	
No	Yes	Yes	Yes	Yes	Yes	Yes	
Yes	No	No	Yes	No	Yes	Yes	
Yes	No	Yes	Yes	Yes	Yes	Yes	
Yes	Yes	No	Yes	Yes	Yes	Yes	
Yes	Yes	Yes	Yes	Yes	Yes	Yes	

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

Equivalences

Some Equivalences (1)

$$\begin{split} (\varphi \wedge \varphi) &\equiv \varphi \\ (\varphi \vee \varphi) &\equiv \varphi \\ (\varphi \wedge \psi) &\equiv (\psi \wedge \varphi) \\ (\varphi \vee \psi) &\equiv (\psi \vee \varphi) \\ ((\varphi \wedge \psi) \wedge \chi) &\equiv (\varphi \wedge (\psi \wedge \chi)) \\ ((\varphi \vee \psi) \vee \chi) &\equiv (\varphi \vee (\psi \vee \chi)) \quad \text{(associativity)} \end{split}$$

German: Idempotenz, Kommutativität, Assoziativität

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

November 25/27, 2024

November 25/27, 2024

D2. Properties of Formulas and Equivalences

Some Equivalences (2)

$$\begin{split} (\varphi \wedge (\varphi \vee \psi)) &\equiv \varphi \\ (\varphi \vee (\varphi \wedge \psi)) &\equiv \varphi \\ (\varphi \wedge (\psi \vee \chi)) &\equiv ((\varphi \wedge \psi) \vee (\varphi \wedge \chi)) \\ (\varphi \vee (\psi \wedge \chi)) &\equiv ((\varphi \vee \psi) \wedge (\varphi \vee \chi)) \quad \text{(distributivity)} \end{split}$$

German: Absorption, Distributivität

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

November 25/27, 2024

D2. Properties of Formulas and Equivalences

Some Equivalences (3)

German: Doppelnegation, De Morgansche Regeln, Tautologieregeln, Unerfüllbarkeitsregeln

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

D2. Properties of Formulas and Equivalences

Equivalences

Substitution Theorem

Theorem (Substitution Theorem)

Let φ and φ' be equivalent propositional formulas over A.

Let ψ be a propositional formula with (at least) one occurrence of the subformula φ .

Then ψ is equivalent to ψ' , where ψ' is constructed from ψ by replacing an occurrence of φ in ψ with φ' .

German: Ersetzbarkeitstheorem

(without proof)

D2. Properties of Formulas and Equivalences

Equivalences

Application of Equivalences: Example

$$\begin{split} (\mathsf{P} \wedge (\mathsf{Q} \vee \neg \mathsf{P})) &\equiv ((\mathsf{P} \wedge \mathsf{Q}) \vee (\mathsf{P} \wedge \neg \mathsf{P})) & \text{ (distributivity)} \\ &\equiv ((\mathsf{P} \wedge \neg \mathsf{P}) \vee (\mathsf{P} \wedge \mathsf{Q})) & \text{ (commutativity)} \\ &\equiv (\mathsf{P} \wedge \mathsf{Q}) & \text{ (unsatisfiability rule)} \end{split}$$

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

November 25/27, 2024 21 / 21