

Discrete Mathematics in Computer Science

D1. Syntax and Semantics of Propositional Logic

Malte Helmert, Gabriele Röger

University of Basel

November 20/25, 2024

Introduction to Formal Logic

Why Logic?

- formalizing mathematics
 - What is a true statement?
 - What is a valid proof?
 - What can and cannot be proved?
- basis of many tools in computer science
 - design of digital circuits
 - semantics of databases; query optimization
 - meaning of programming languages
 - verification of safety-critical hardware/software
 - knowledge representation in artificial intelligence
 - logic-based programming languages (e.g. Prolog)
 - ...

Application: Logic Programming I

Declarative approach: Describe **what** to accomplish,
not how to accomplish it.

Example (Map Coloring)

Color each region in a map with a limited number of colors so that no two adjacent regions have the same color.

This is a hard problem!

Application: Logic Programming II

Prolog program

```
color(red). color(blue). color(green). color(yellow).

differentColor(ColorA, ColorB) :-
    color(ColorA), color(ColorB),
    ColorA \= ColorB.

switzerland(AG, AI, AR, BE, BL, BS, FR, GE, GL, GR,
           JU, LU, NE, NW, OW, SG, SH, SO, SZ, TG,
           TI, UR, VD, VS, ZG, ZH) :-
    differentColor(AG, BE), differentColor(AG, BL),
    ...
    differentColor(VD, VS), differentColor(ZH, ZG).
```

What Logic is About

General Question:

- Given some knowledge about the world (a knowledge base)
- what can we **derive** from it?
- And on what basis may we argue?

~~~ **logic**

## Goal: “mechanical” proofs

- formal “game with letters”
- detached from a concrete meaning

# Running Example



What's the secret of your long life?

I am on a strict diet: If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

# Propositional Logic

Propositional logic is a simple logic without numbers or objects.

Building blocks of propositional logic:

- **propositions** are statements that can be either true or false
- **atomic propositions** cannot be split into subpropositions
- **logical connectives** connect propositions to form new ones

German: Aussagenlogik, Aussage, atomare Aussage,  
Junktoren/logische Verknüpfungen

# Examples for Building Blocks



If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

- Every sentence is a proposition that consists of subpropositions (e. g., "eat ice cream or don't drink beer").

## Examples for Building Blocks



If I don't **drink beer** to a meal, then I always **eat fish**. Whenever I **have fish** and **beer** with the same meal, I abstain from **ice cream**. When I **eat ice cream** or don't **drink beer**, then I never touch **fish**.

- Every sentence is a proposition that consists of subpropositions (e. g., "eat ice cream or don't drink beer").
- atomic propositions "**drink beer**", "**eat fish**", "**eat ice cream**"

# Examples for Building Blocks



If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

- Every sentence is a proposition that consists of subpropositions (e. g., "eat ice cream or don't drink beer").
- atomic propositions "drink beer", "eat fish", "eat ice cream"
- logical connectives "and", "or", negation, "if, then"

# Challenges with Natural Language



If I don't drink beer to a meal, then I always eat fish.  
Whenever I have fish and beer with the same meal, I abstain from ice cream.  
When I eat ice cream or don't drink beer, then I never touch fish.

# Challenges with Natural Language



If I don't drink beer **to a meal**, then I **always** eat fish.

Whenever I have fish and beer **with the same meal**, I abstain from ice cream.

When I eat ice cream or don't drink beer, then I never touch fish.

- “irrelevant” information

# Challenges with Natural Language



If I don't drink beer, then I eat fish.  
Whenever I have fish and beer, I abstain from ice cream.  
When I eat ice cream or don't drink beer, then I never touch fish.

- “irrelevant” information

# Challenges with Natural Language



If I **don't** drink beer, then I eat fish.  
Whenever I have fish and beer, I **abstain** from ice cream.  
When I eat ice cream or **don't** drink beer, then I **never** touch fish.

- “irrelevant” information
- different formulations for the same connective/proposition

# Challenges with Natural Language



If I don't drink beer, then I **eat fish**.

Whenever I **have fish** and beer, I abstain from ice cream.

When I eat ice cream or don't drink beer, then I never **touch fish**.

- “irrelevant” information
- different formulations for the same connective/proposition

# Challenges with Natural Language



If not DrinkBeer, then EatFish.  
If EatFish and DrinkBeer,  
then not EatIceCream.  
If EatIceCream or not DrinkBeer,  
then not EatFish.

- “irrelevant” information
- different formulations for the same connective/proposition

# What is Next?

- What are meaningful (well-defined) sequences of atomic propositions and connectives?  
“if then EatIceCream not or DrinkBeer and” not meaningful  
→ **syntax**
- What does it mean if we say that a statement is true?  
Is “DrinkBeer and EatFish” true?  
→ **semantics**
- When does a statement logically follow from another?  
Does “EatFish” follow from “if DrinkBeer, then EatFish”?  
→ **logical entailment**

German: Syntax, Semantik, logische Folgerung

# Syntax of Propositional Logic

# Syntax of Propositional Logic

## Definition (Syntax of Propositional Logic)

Let  $A$  be a set of **atomic propositions**. The set of **propositional formulas** (over  $A$ ) is inductively defined as follows:

- Every **atom  $a$**   $\in A$  is a propositional formula over  $A$ .
- If  $\varphi$  is a propositional formula over  $A$ ,  
then so is its **negation**  $\neg\varphi$ .
- If  $\varphi$  and  $\psi$  are propositional formulas over  $A$ ,  
then so is the **conjunction**  $(\varphi \wedge \psi)$ .
- If  $\varphi$  and  $\psi$  are propositional formulas over  $A$ ,  
then so is the **disjunction**  $(\varphi \vee \psi)$ .

The **implication**  $(\varphi \rightarrow \psi)$  is an abbreviation for  $(\neg\varphi \vee \psi)$ .

The **biconditional**  $(\varphi \leftrightarrow \psi)$  is an abbrev. for  $((\varphi \rightarrow \psi) \wedge (\psi \rightarrow \varphi))$ .

**German:** atomare Aussage, aussagenlogische Formel, Atom, Negation, Konjunktion, Disjunktion, Implikation, Bikonditional

## Syntax: Examples

Which of the following sequences of symbols are propositional formulas over the set of all possible letter sequences? Which kinds of formula are they (atom, conjunction, ...)?

- $(A \wedge (B \vee C))$
- $\neg(A \wedge \text{Rain} \vee \text{StreetWet})$
- $\neg(\text{Rain} \vee \text{StreetWet})$
- $((\text{EatFish} \wedge \text{DrinkBeer}) \rightarrow \neg \text{EatIceCream})$
- $\text{Rain} \wedge \neg \text{Rain}$
- $\neg(A = B)$
- $(A \wedge \neg(B \leftrightarrow C))$
- $((A \leq B) \wedge C)$
- $(A \vee \neg(B \leftrightarrow C))$
- $((A_1 \wedge A_2) \vee \neg(A_3 \leftrightarrow A_2))$

# Semantics of Propositional Logic

# Meaning of Propositional Formulas?

So far propositional formulas are only symbol sequences without any meaning.

For example, what does this mean:

$((\text{EatFish} \wedge \text{DrinkBeer}) \rightarrow \neg \text{EatIceCream})$ ?

▷ **We need semantics!**

# Semantics of Propositional Logic

## Definition (Semantics of Propositional Logic)

A **truth assignment** (or **interpretation**) for a set of atomic propositions  $A$  is a function  $\mathcal{I} : A \rightarrow \{0, 1\}$ .

A propositional **formula**  $\varphi$  (over  $A$ ) **holds under**  $\mathcal{I}$  (written as  $\mathcal{I} \models \varphi$ ) according to the following definition:

$$\mathcal{I} \models a \quad \text{iff} \quad \mathcal{I}(a) = 1 \quad (\text{for } a \in A)$$

$$\mathcal{I} \models \neg\varphi \quad \text{iff} \quad \text{not } \mathcal{I} \models \varphi$$

$$\mathcal{I} \models (\varphi \wedge \psi) \quad \text{iff} \quad \mathcal{I} \models \varphi \text{ and } \mathcal{I} \models \psi$$

$$\mathcal{I} \models (\varphi \vee \psi) \quad \text{iff} \quad \mathcal{I} \models \varphi \text{ or } \mathcal{I} \models \psi$$

**Question:** should we define semantics of  $(\varphi \rightarrow \psi)$  and  $(\varphi \leftrightarrow \psi)$ ?

**German:** Wahrheitsbelegung/Interpretation,  $\varphi$  gilt unter  $\mathcal{I}$

## Semantics of Propositional Logic: Terminology

- For  $\mathcal{I} \models \varphi$  we also say  $\mathcal{I}$  is a model of  $\varphi$  and that  $\varphi$  is true under  $\mathcal{I}$ .
- If  $\varphi$  does not hold under  $\mathcal{I}$ , we write this as  $\mathcal{I} \not\models \varphi$  and say that  $\mathcal{I}$  is no model of  $\varphi$  and that  $\varphi$  is false under  $\mathcal{I}$ .
- Note:  $\models$  is not part of the formula but part of the meta language (speaking about a formula).

German:  $\mathcal{I}$  ist ein/kein Modell von  $\varphi$ ;  $\varphi$  ist wahr/falsch unter  $\mathcal{I}$ ;  
Metasprache

## Exercise

Consider the set  $A = \{X, Y, Z\}$  of atomic propositions and formula  $\varphi = (X \wedge \neg Y)$ .

Specify an interpretation  $\mathcal{I}$  for  $A$  with  $\mathcal{I} \models \varphi$ .

## Semantics: Example (1)

$$A = \{\text{DrinkBeer}, \text{EatFish}, \text{EatIceCream}\}$$

$$\mathcal{I} = \{\text{DrinkBeer} \mapsto 1, \text{EatFish} \mapsto 0, \text{EatIceCream} \mapsto 1\}$$

$$\varphi = (\neg \text{DrinkBeer} \rightarrow \text{EatFish})$$

Do we have  $\mathcal{I} \models \varphi$ ?

## Semantics: Example (2)

Goal: prove  $\mathcal{I} \models \varphi$ .

Let us use the definitions we have seen:

$$\begin{aligned}\mathcal{I} \models \varphi &\text{ iff } \mathcal{I} \models (\neg \text{DrinkBeer} \rightarrow \text{EatFish}) \\ &\text{ iff } \mathcal{I} \models (\neg \neg \text{DrinkBeer} \vee \text{EatFish}) \\ &\text{ iff } \mathcal{I} \models \neg \neg \text{DrinkBeer} \text{ or } \mathcal{I} \models \text{EatFish}\end{aligned}$$

This means that if we want to prove  $\mathcal{I} \models \varphi$ , it is sufficient to prove

$$\mathcal{I} \models \neg \neg \text{DrinkBeer}$$

or to prove

$$\mathcal{I} \models \text{EatFish}.$$

We attempt to prove the first of these statements.

## Semantics: Example (3)

New goal: prove  $\mathcal{I} \models \neg\neg \text{DrinkBeer}$ .

We again use the definitions:

$$\begin{aligned}\mathcal{I} \models \neg\neg \text{DrinkBeer} &\text{ iff not } \mathcal{I} \models \neg \text{DrinkBeer} \\ &\text{ iff not not } \mathcal{I} \models \text{DrinkBeer} \\ &\text{ iff } \mathcal{I} \models \text{DrinkBeer} \\ &\text{ iff } \mathcal{I}(\text{DrinkBeer}) = 1\end{aligned}$$

The last statement is true for our interpretation  $\mathcal{I}$ .

To write this up as a **proof** of  $\mathcal{I} \models \varphi$ ,  
we can go through this line of reasoning back-to-front,  
starting from our assumptions and ending with the conclusion  
we want to show.

## Semantics: Example (4)

Let  $\mathcal{I} = \{\text{DrinkBeer} \mapsto 1, \text{EatFish} \mapsto 0, \text{EatIceCream} \mapsto 1\}$ .

**Proof** that  $\mathcal{I} \models (\neg \text{DrinkBeer} \rightarrow \text{EatFish})$ :

- ① We have  $\mathcal{I} \models \text{DrinkBeer}$   
(uses defn. of  $\models$  for atomic props. and fact  $\mathcal{I}(\text{DrinkBeer}) = 1$ ).
- ② From (1), we get  $\mathcal{I} \not\models \neg \text{DrinkBeer}$   
(uses defn. of  $\models$  for negations).
- ③ From (2), we get  $\mathcal{I} \models \neg \neg \text{DrinkBeer}$   
(uses defn. of  $\models$  for negations).
- ④ From (3), we get  $\mathcal{I} \models (\neg \neg \text{DrinkBeer} \vee \psi)$  for all formulas  $\psi$ ,  
in particular  $\mathcal{I} \models (\neg \neg \text{DrinkBeer} \vee \text{EatFish})$   
(uses defn. of  $\models$  for disjunctions).
- ⑤ From (4), we get  $\mathcal{I} \models (\neg \text{DrinkBeer} \rightarrow \text{EatFish})$   
(uses defn. of " $\rightarrow$ ").

□

## Summary

- propositional logic based on atomic propositions
- syntax defines what well-formed formulas are
- semantics defines when a formula is true
- interpretations are the basis of semantics