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University of Basel

November 21/26, 2024
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M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science November 21/26, 2024 3 / 28

D1. Syntax and Semantics of Propositional Logic Introduction to Formal Logic

Why Logic?

▶ formalizing mathematics
▶ What is a true statement?
▶ What is a valid proof?
▶ What can and cannot be proved?

▶ basis of many tools in computer science
▶ design of digital circuits
▶ semantics of databases; query optimization
▶ meaning of programming languages
▶ verification of safety-critical hardware/software
▶ knowledge representation in artificial intelligence
▶ logic-based programming languages (e.g. Prolog)
▶ . . .
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Application: Logic Programming I

Declarative approach: Describe what to accomplish,
Declarative approach: not how to accomplish it.

Example (Map Coloring)

Color each region in a map with a limited number of colors
so that no two adjacent regions have the same color.

CC BY-SA 3.0 Wikimedia Commons (TUBS)

This is a hard problem!
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Application: Logic Programming II

Prolog program

color(red). color(blue). color(green). color(yellow).

differentColor(ColorA, ColorB) :-

color(ColorA), color(ColorB),

ColorA \= ColorB.

switzerland(AG, AI, AR, BE, BL, BS, FR, GE, GL, GR,

JU, LU, NE, NW, OW, SG, SH, SO, SZ, TG,

TI, UR, VD, VS, ZG, ZH) :-

differentColor(AG, BE), differentColor(AG, BL),

...

differentColor(VD, VS), differentColor(ZH, ZG).
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What Logic is About

General Question:

▶ Given some knowledge about the world (a knowledge base)

▶ what can we derive from it?

▶ And on what basis may we argue?

⇝ logic

Goal: “mechanical” proofs

▶ formal “game with letters”

▶ detached from a concrete meaning
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Running Example

What’s the secret of your long life?

I am on a strict diet: If I don’t drink beer
to a meal, then I always eat fish. When-
ever I have fish and beer with the same
meal, I abstain from ice cream. When I
eat ice cream or don’t drink beer, then I
never touch fish.

Exercise from U. Schöning: Logik für Informatiker

Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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Propositional Logic

Propositional logic is a simple logic without numbers or objects.

Building blocks of propositional logic:

▶ propositions are statements that can be either true or false

▶ atomic propositions cannot be split into subpropositions

▶ logical connectives connect propositions to form new ones

German: Aussagenlogik, Aussage, atomare Aussage,

German:

Junktoren/logische Verknüpfungen
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Examples for Building Blocks

If I don’t drink beer to a meal, then I
always eat fish. Whenever I have fish and
beer with the same meal, I abstain from
ice cream. When I eat ice cream or don’t
drink beer, then I never touch fish.

▶ Every sentence is a proposition that consists of
subpropositions (e. g., “eat ice cream or don’t drink beer”).

▶ atomic propositions “drink beer”, “eat fish”, “eat ice cream”

▶ logical connectives “and”, “or”, negation, “if, then”

Exercise from U. Schöning: Logik für Informatiker

Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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Challenges with Natural Language

If I don’t drink beer to a meal, then I
always eat fish.
Whenever I have fish and beer with the
same meal, I abstain from ice cream.
When I eat ice cream or don’t drink
beer, then I never touch fish.

▶ “irrelevant” information

▶ different formulations for the same connective/proposition

Exercise from U. Schöning: Logik für Informatiker

Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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Challenges with Natural Language

If not DrinkBeer, then EatFish.
If EatFish and DrinkBeer,
then not EatIceCream.
If EatIceCream or not DrinkBeer,
then not EatFish.

▶ “irrelevant” information

▶ different formulations for the same connective/proposition

Exercise from U. Schöning: Logik für Informatiker

Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net
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What is Next?

▶ What are meaningful (well-defined) sequences of
atomic propositions and connectives?
“if then EatIceCream not or DrinkBeer and” not meaningful
→ syntax

▶ What does it mean if we say that a statement is true?
Is “DrinkBeer and EatFish” true?
→ semantics

▶ When does a statement logically follow from another?
Does “EatFish” follow from “if DrinkBeer, then EatFish”?
→ logical entailment

German: Syntax, Semantik, logische Folgerung
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Syntax of Propositional Logic

Definition (Syntax of Propositional Logic)

Let A be a set of atomic propositions. The set of propositional
formulas (over A) is inductively defined as follows:

▶ Every atom a ∈ A is a propositional formula over A.

▶ If φ is a propositional formula over A,
then so is its negation ¬φ.

▶ If φ and ψ are propositional formulas over A,
then so is the conjunction (φ ∧ ψ).

▶ If φ and ψ are propositional formulas over A,
then so is the disjunction (φ ∨ ψ).

The implication (φ→ ψ) is an abbreviation for (¬φ ∨ ψ).
The biconditional (φ↔ ψ) is an abbrev. for ((φ→ ψ)∧ (ψ → φ)).
German: atomare Aussage, aussagenlogische Formel, Atom,
Negation, Konjunktion, Disjunktion, Implikation, Bikonditional
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Syntax: Examples

Which of the following sequences of symbols are propositional
formulas over the set of all possible letter sequences? Which kinds
of formula are they (atom, conjunction, . . . )?

▶ (A ∧ (B ∨ C))

▶ ¬( ∧ Rain ∨ StreetWet)

▶ ¬(Rain ∨ StreetWet)

▶ ((EatFish ∧ DrinkBeer) → ¬EatIceCream)

▶ Rain ∧ ¬Rain
▶ ¬(A = B)

▶ (A ∧ ¬(B ↔)C)

▶ ((A ≤ B) ∧ C)

▶ (A ∨ ¬(B ↔ C))

▶ ((A1 ∧ A2) ∨ ¬(A3 ↔ A2))
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D1.3 Semantics of Propositional
Logic
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Meaning of Propositional Formulas?

So far propositional formulas are only symbol sequences
without any meaning.

For example, what does this mean:
((EatFish ∧ DrinkBeer) → ¬EatIceCream)?

▷ We need semantics!
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Semantics of Propositional Logic

Definition (Semantics of Propositional Logic)

A truth assignment (or interpretation) for a set of atomic
propositions A is a function I : A → {0, 1}.
A propositional formula φ (over A) holds under I
(written as I |= φ) according to the following definition:

I |= a iff I(a) = 1 (for a ∈ A)
I |= ¬φ iff not I |= φ
I |= (φ ∧ ψ) iff I |= φ and I |= ψ
I |= (φ ∨ ψ) iff I |= φ or I |= ψ

Question: should we define semantics of (φ→ ψ) and (φ↔ ψ)?

German: Wahrheitsbelegung/Interpretation, φ gilt unter I
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Semantics of Propositional Logic: Terminology

▶ For I |= φ we also say I is a model of φ
and that φ is true under I.

▶ If φ does not hold under I, we write this as I ̸|= φ
and say that I is no model of φ
and that φ is false under I.

▶ Note: |= is not part of the formula
but part of the meta language (speaking about a formula).

German: I ist ein/kein Modell von φ; φ ist wahr/falsch unter I;
Metasprache
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Exercise

Consider the set A = {X,Y,Z} of atomic propositions
and formula φ = (X ∧ ¬Y).

Specify an interpretation I for A with I |= φ.
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Semantics: Example (1)

A = {DrinkBeer,EatFish,EatIceCream}
I = {DrinkBeer 7→ 1,EatFish 7→ 0,EatIceCream 7→ 1}
φ = (¬DrinkBeer → EatFish)

Do we have I |= φ?
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Semantics: Example (2)

Goal: prove I |= φ.

Let us use the definitions we have seen:

I |= φ iff I |= (¬DrinkBeer → EatFish)

iff I |= (¬¬DrinkBeer ∨ EatFish)

iff I |= ¬¬DrinkBeer or I |= EatFish

This means that if we want to prove I |= φ, it is sufficient to prove

I |= ¬¬DrinkBeer

or to prove
I |= EatFish.

We attempt to prove the first of these statements.
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Semantics: Example (3)

New goal: prove I |= ¬¬DrinkBeer.

We again use the definitions:

I |= ¬¬DrinkBeer iff not I |= ¬DrinkBeer
iff not not I |= DrinkBeer

iff I |= DrinkBeer

iff I(DrinkBeer) = 1

The last statement is true for our interpretation I.

To write this up as a proof of I |= φ,
we can go through this line of reasoning back-to-front,
starting from our assumptions and ending with the conclusion
we want to show.
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Semantics: Example (4)

Let I = {DrinkBeer 7→ 1,EatFish 7→ 0,EatIceCream 7→ 1}.
Proof that I |= (¬DrinkBeer → EatFish):

(1) We have I |= DrinkBeer
(uses defn. of |= for atomic props. and fact
I(DrinkBeer) = 1).

(2) From (1), we get I ̸|= ¬DrinkBeer
(uses defn. of |= for negations).

(3) From (2), we get I |= ¬¬DrinkBeer
(uses defn. of |= for negations).

(4) From (3), we get I |= (¬¬DrinkBeer ∨ ψ) for all formulas ψ,
in particular I |= (¬¬DrinkBeer ∨ EatFish)
(uses defn. of |= for disjunctions).

(5) From (4), we get I |= (¬DrinkBeer → EatFish)
(uses defn. of “→”). □
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Summary

▶ propositional logic based on atomic propositions

▶ syntax defines what well-formed formulas are

▶ semantics defines when a formula is true

▶ interpretations are the basis of semantics
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