Discrete Mathematics in Computer Science D1. Syntax and Semantics of Propositional Logic

Malte Helmert, Gabriele Röger

University of Basel

November 21/26, 2024

Discrete Mathematics in Computer Science November 21/26, 2024 — D1. Syntax and Semantics of Propositional Logic

D1.1 Introduction to Formal Logic

D1.2 Syntax of Propositional Logic

D1.3 Semantics of Propositional Logic

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science Novemb

D1.1 Introduction to Formal Logic

. . .

Why Logic?

formalizing mathematics

- What is a true statement?
- What is a valid proof?
- What can and cannot be proved?
- basis of many tools in computer science
 - design of digital circuits
 - semantics of databases; query optimization
 - meaning of programming languages
 - verification of safety-critical hardware/software
 - knowledge representation in artificial intelligence
 - logic-based programming languages (e.g. Prolog)

Application: Logic Programming I

Declarative approach: Describe what to accomplish, not how to accomplish it.

Example (Map Coloring)

Color each region in a map with a limited number of colors so that no two adjacent regions have the same color.

This is a hard problem!

CC BY-SA 3.0 Wikimedia Commons (TUBS)

Application: Logic Programming II

```
Prolog program
color(red). color(blue). color(green). color(yellow).
differentColor(ColorA, ColorB) :-
    color(ColorA), color(ColorB),
    ColorA \setminus= ColorB.
switzerland(AG, AI, AR, BE, BL, BS, FR, GE, GL, GR,
            JU, LU, NE, NW, OW, SG, SH, SO, SZ, TG,
            TI, UR, VD, VS, ZG, ZH) :-
    differentColor(AG, BE), differentColor(AG, BL),
    . . .
    differentColor(VD, VS), differentColor(ZH, ZG).
```

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

What Logic is About

General Question:

- Given some knowledge about the world (a knowledge base)
- what can we derive from it?
- And on what basis may we argue?

 $\rightsquigarrow \mathsf{logic}$

- Goal: "mechanical" proofs
 - formal "game with letters"
 - detached from a concrete meaning

Running Example

What's the secret of your long life?

I am on a strict diet: If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

> Exercise from U. Schöning: Logik für Informatiker Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

November 21/26, 2024 8 / 28

Propositional Logic

Propositional logic is a simple logic without numbers or objects.

Building blocks of propositional logic:

- propositions are statements that can be either true or false
- atomic propositions cannot be split into subpropositions
- logical connectives connect propositions to form new ones

German: Aussagenlogik, Aussage, atomare Aussage, Junktoren/logische Verknüpfungen

Examples for Building Blocks

If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

- Every sentence is a proposition that consists of subpropositions (e.g., "eat ice cream or don't drink beer").
- atomic propositions "drink beer", "eat fish", "eat ice cream"
- logical connectives "and", "or", negation, "if, then"

Exercise from U. Schöning: Logik für Informatiker Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

Examples for Building Blocks

If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

- Every sentence is a proposition that consists of subpropositions (e.g., "eat ice cream or don't drink beer").
- atomic propositions "drink beer", "eat fish", "eat ice cream"
- logical connectives "and", "or", negation, "if, then"

Exercise from U. Schöning: Logik für Informatiker Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

Introduction to Formal Logic

Challenges with Natural Language

If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

"irrelevant" information

Exercise from U. Schöning: Logik für Informatiker Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science November 21/26, 2024 12 / 28

Introduction to Formal Logic

Challenges with Natural Language

If I don't drink beer, then I eat fish. Whenever I have fish and beer, I abstain from ice cream.

When I eat ice cream or don't drink beer, then I never touch fish.

"irrelevant" information

different formulations for the same connective/proposition

Exercise from U. Schöning: Logik für Informatiker Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

Introduction to Formal Logic

Challenges with Natural Language

If not DrinkBeer, then EatFish. If EatFish and DrinkBeer, then not EatIceCream. If EatIceCream or not DrinkBeer, then not EatFish.

- "irrelevant" information
- different formulations for the same connective/proposition

Exercise from U. Schöning: Logik für Informatiker Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

What is Next?

- What are meaningful (well-defined) sequences of atomic propositions and connectives?
 "if then EatlceCream not or DrinkBeer and" not meaningful → syntax
- ► What does it mean if we say that a statement is true? Is "DrinkBeer and EatFish" true? → semantics
- ► When does a statement logically follow from another? Does "EatFish" follow from "if DrinkBeer, then EatFish"? → logical entailment

German: Syntax, Semantik, logische Folgerung

D1.2 Syntax of Propositional Logic

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science November 21/26, 2024 16 / 28

Syntax of Propositional Logic

```
Definition (Syntax of Propositional Logic)
Let A be a set of atomic propositions. The set of propositional formulas (over A) is inductively defined as follows:
Every atom a ∈ A is a propositional formula over A.
If φ is a propositional formula over A, then so is its negation ¬φ.
If φ and ψ are propositional formulas over A,
```

```
then so is the conjunction (\varphi \wedge \psi).
```

If φ and ψ are propositional formulas over A, then so is the disjunction (φ ∨ ψ).

The implication $(\varphi \rightarrow \psi)$ is an abbreviation for $(\neg \varphi \lor \psi)$. The biconditional $(\varphi \leftrightarrow \psi)$ is an abbrev. for $((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))$. German: atomare Aussage, aussagenlogische Formel, Atom, Negation, Konjunktion, Disjunktion, Implikation, Bikonditional

Syntax: Examples

Which of the following sequences of symbols are propositional formulas over the set of all possible letter sequences? Which kinds of formula are they (atom, conjunction, \dots)?

- ► (A ∧ (B ∨ C))
- $\blacktriangleright \neg (\land \mathsf{Rain} \lor \mathsf{StreetWet})$
- ► ¬(Rain ∨ StreetWet)
- ((EatFish \land DrinkBeer) $\rightarrow \neg$ EatIceCream)
- ▶ Rain $\land \neg$ Rain

►
$$(A \land \neg(B \leftrightarrow)C)$$

• ((A
$$\leq$$
 B) \land C)

$$\blacktriangleright (\mathsf{A} \lor \neg (\mathsf{B} \leftrightarrow \mathsf{C}))$$

$$\blacktriangleright ((\mathsf{A}_1 \land \mathsf{A}_2) \lor \neg (\mathsf{A}_3 \leftrightarrow \mathsf{A}_2))$$

D1.3 Semantics of Propositional Logic

Meaning of Propositional Formulas?

So far propositional formulas are only symbol sequences without any meaning.

For example, what does this mean: ((EatFish \land DrinkBeer) $\rightarrow \neg$ EatIceCream)?

▷ We need semantics!

Semantics of Propositional Logic

Definition (Semantics of Propositional Logic) A truth assignment (or interpretation) for a set of atomic propositions A is a function $\mathcal{I} : A \to \{0, 1\}$. A propositional formula φ (over A) holds under \mathcal{I} (written as $\mathcal{I} \models \varphi$) according to the following definition: $\mathcal{I} \models a \quad \text{iff} \quad \mathcal{I}(a) = 1 \qquad (\text{for } a \in A)$ $\mathcal{I} \models \neg \varphi \quad \text{iff} \quad \text{not } \mathcal{I} \models \varphi$ $\mathcal{I} \models (\varphi \land \psi) \quad \text{iff} \quad \mathcal{I} \models \varphi \text{ and } \mathcal{I} \models \psi$ $\mathcal{I} \models (\varphi \lor \psi) \quad \text{iff} \quad \mathcal{I} \models \varphi \text{ or } \mathcal{I} \models \psi$

Question: should we define semantics of $(\varphi \rightarrow \psi)$ and $(\varphi \leftrightarrow \psi)$? German: Wahrheitsbelegung/Interpretation, φ gilt unter \mathcal{I}

Semantics of Propositional Logic: Terminology

- For *I* ⊨ φ we also say *I* is a model of φ and that φ is true under *I*.
- If φ does not hold under I, we write this as I ⊭ φ and say that I is no model of φ and that φ is false under I.
- Note: |= is not part of the formula but part of the meta language (speaking about a formula).

German: \mathcal{I} ist ein/kein Modell von φ ; φ ist wahr/falsch unter \mathcal{I} ; Metasprache Exercise

Consider the set $A = \{X, Y, Z\}$ of atomic propositions and formula $\varphi = (X \land \neg Y)$.

Specify an interpretation \mathcal{I} for A with $\mathcal{I} \models \varphi$.

Semantics: Example (1)

$$\begin{split} & \mathcal{A} = \{\mathsf{DrinkBeer},\mathsf{EatFish},\mathsf{EatIceCream}\}\\ & \mathcal{I} = \{\mathsf{DrinkBeer} \mapsto 1,\mathsf{EatFish} \mapsto 0,\mathsf{EatIceCream} \mapsto 1\}\\ & \varphi = (\neg\mathsf{DrinkBeer} \to \mathsf{EatFish}) \end{split}$$

Do we have $\mathcal{I} \models \varphi$?

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science November 21/26, 2024 24 / 28

Semantics: Example (2)

Goal: prove $\mathcal{I} \models \varphi$.

Let us use the definitions we have seen:

$$\begin{aligned} \mathcal{I} \models \varphi \text{ iff } \mathcal{I} \models (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{EatFish}) \\ & \text{iff } \mathcal{I} \models (\neg \neg \mathsf{DrinkBeer} \lor \mathsf{EatFish}) \\ & \text{iff } \mathcal{I} \models \neg \neg \mathsf{DrinkBeer} \text{ or } \mathcal{I} \models \mathsf{EatFish} \end{aligned}$$

This means that if we want to prove $\mathcal{I} \models \varphi$, it is sufficient to prove

 $\mathcal{I} \models \neg \neg \mathsf{DrinkBeer}$

or to prove

$$\mathcal{I} \models \mathsf{EatFish}.$$

We attempt to prove the first of these statements.

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science November 21/26, 2024 25 / 28

Semantics: Example (3)

New goal: prove $\mathcal{I} \models \neg \neg \mathsf{DrinkBeer}$.

We again use the definitions:

$$\mathcal{I} \models \neg \neg \mathsf{DrinkBeer} \text{ iff not } \mathcal{I} \models \neg \mathsf{DrinkBeer} \\ \text{iff not not } \mathcal{I} \models \mathsf{DrinkBeer} \\ \text{iff } \mathcal{I} \models \mathsf{DrinkBeer} \\ \text{iff } \mathcal{I}(\mathsf{DrinkBeer}) = 1$$

The last statement is true for our interpretation \mathcal{I} .

To write this up as a proof of $\mathcal{I} \models \varphi$, we can go through this line of reasoning back-to-front, starting from our assumptions and ending with the conclusion we want to show.

Semantics: Example (4)

 $\mathsf{Let}\ \mathcal{I} = \{\mathsf{DrinkBeer} \mapsto 1, \mathsf{EatFish} \mapsto 0, \mathsf{EatIceCream} \mapsto 1\}.$

Proof that $\mathcal{I} \models (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{EatFish})$:

- From (3), we get I ⊨ (¬¬DrinkBeer ∨ ψ) for all formulas ψ, in particular I ⊨ (¬¬DrinkBeer ∨ EatFish) (uses defn. of ⊨ for disjunctions).
- Isome in the set I ⊨ (¬DrinkBeer → EatFish) (uses defn. of "→").

Summary

- propositional logic based on atomic propositions
- syntax defines what well-formed formulas are
- semantics defines when a formula is true
- interpretations are the basis of semantics