Discrete Mathematics in Computer Science C3. Acyclicity

Malte Helmert, Gabriele Röger

University of Basel

November 11/13, 2024

[Acyclic \(Di-\) Graphs](#page-1-0)

Acyclic

Similarly to connectedness, the presence or absence of cycles is an important practical property for (di-) graphs.

Definition (acyclic, forest, DAG)

A graph or digraph G is called acyclic if there exists no cycle in G. An acyclic graph is also called a forest. An acyclic digraph is also called a DAG (directed acyclic graph).

German: azyklisch/kreisfrei, Wald, DAG

Acyclic (Di-) Graphs – Example

Trees

Definition (tree)

A connected forest is called a tree.

German: Baum

- \blacksquare Tree is also a word for a recursive data structure. which consists of either a leaf or a parent node with one or more children, which are themselves trees.
- **This other kind of tree is also called a rooted tree** to distinguish it from a tree as a graph.
- The two meanings of "tree" are distinct but closely related.

Tree Graphs vs. Rooted Trees – Example (1)

tree graph

rooted tree with root A

Tree Graphs vs. Rooted Trees – Example (2)

tree graph

rooted tree with root C

Tree Graphs vs. Rooted Trees – Example (3)

tree graph

rooted tree with root F

From Tree Graphs to Rooted Trees

General procedure for converting tree graphs into rooted trees:

- Select any vertex v . Make v the root of the tree.
- **Initially, v is the only pending vertex,** and there are no processed vertices.
- As long as there are pending vertices:
	- Select any pending vertex u .
	- Make all neighbours v of u that are not yet processed children of u and mark them as pending.
	- \blacksquare Change u from pending to processed.

We do not prove that this procedure always works. A proof of correctness can be given based on the results we show next.

[Unique Paths in Trees](#page-9-0)

Unique Paths in Trees

Theorem

Let $G = (V, E)$ be a graph. Then G is a tree iff there exists exactly one path from any vertex $u \in V$ to any vertex $v \in V$.

Unique Paths In Trees – Proof (1)

Proof.

 (\Rightarrow) : G is a tree. Let $u, v \in V$.

We must show that there exists exactly one path from u to v .

We know that at least one path exists because G is connected.

It remains to show that there cannot be two paths from u to v .

If $u = v$, there is only one path (the empty one).

(Any longer path would have to repeat a vertex.)

We assume that there exist two different paths from u to v $(u \neq v)$ and derive a contradiction.

Unique Paths In Trees – Proof (2)

Proof (continued).

Let $\pi = \langle v_0, v_1, \ldots, v_n \rangle$ and $\pi' = \langle v'_0, v'_1, \ldots, v'_m \rangle$ be the two paths (with $v_0 = v'_0 = u$ and $v_n = v'_m = v$). Let *i* be the smallest index with $v_i \neq v'_i$, which must exist because the two paths are different, and neither can be a prefix of the other (else v would be repeated in the longer path). We have $i \geq 1$ because $v_0 = v'_0$. Let $j \geq i$ be the smallest index such that $v_j = v'_k$ for some $k \geq i$. Such an index must exist because $v_n = v'_m$. Then $\langle v_{i-1}, \ldots, v_{j-1}, v_k', \ldots, v_{i-1}' \rangle$ is a cycle, which contradicts the requirement that G is a tree.

Unique Paths In Trees – Proof (3)

Proof (continued).

 (\Leftarrow) : For all $u, v \in V$, there exists exactly one path from u to v. We must show that G is a tree, i.e., is connected and acyclic. Because there exist paths from all u to all v , G is connected. Proof by contradiction: assume that there exists a cycle in G , $\pi = \langle u, v_1, \ldots, v_n, u \rangle$ with $n > 2$. (Note that all cycles have length at least 3.) From the definition of cycles, we have $v_1 \neq v_n$. Then $\langle u, v_1 \rangle$ and $\langle u, v_n, \ldots, v_1 \rangle$ are two different paths from u to v_1 , contradicting that there exists exactly one path from every vertex to every vertex. Hence G must be acyclic.

[Leaves and Edge Counts in Trees and](#page-14-0) [Forests](#page-14-0)

Leaves in Trees

Definition

Let $G = (V, E)$ be a tree. A leaf of G is a vertex $v \in V$ with deg(v) ≤ 1 .

Note: The case deg(v) = 0 only occurs in single-vertex trees $(|V| = 1)$. In trees with at least two vertices, vertices with degree 0 cannot exist because this would make the graph unconnected.

Theorem

Let $G = (V, E)$ be a tree with $|V| \geq 2$. Then G has at least two leaves.

Leaves in Trees – Proof

Proof.

Let $\pi = \langle v_0, \ldots, v_n \rangle$ be path in G with maximal length among all paths in G. Because $|V| \geq 2$, we have $n \geq 1$ (else G would not be connected). We show that vertex v_n has degree 1: v_{n-1} is a neighbour in G. Assume that it were not the only neighbour of v_n in G, so u is another neighbour of v_n . Then:

- If u is not on the path, then $\langle v_0, \ldots, v_n, u \rangle$ is a longer path: contradiction.
- If *u* is on the path, then $u = v_i$ for some $i \neq n$ and $i \neq n 1$. Then $\langle v_i, \ldots, v_n, v_i \rangle$ is a cycle: contradiction.

By reversing π we can show deg(v_0) = 1 in the same way.

Edges in Trees

Theorem

Let $G = (V, E)$ be a tree with $V \neq \emptyset$. Then $|E| = |V| - 1$.

Edges in Trees – Proof (1)

Proof.

Proof by induction over $n = |V|$.

Edges in Trees – Proof (1)

Proof.

Proof by induction over $n = |V|$.

Induction base $(n = 1)$:

Then G has 1 vertex and 0 edges. We get $|E| = 0 = 1 - 1 = |V| - 1$.

Edges in Trees – Proof (1)

Proof.

```
Proof by induction over n = |V|.
```

```
Induction base (n = 1):
```
Then G has 1 vertex and 0 edges. We get $|E| = 0 = 1 - 1 = |V| - 1$.

```
Induction step (n \rightarrow n+1):
Let G = (V, E) be a tree with n + 1 vertices (n \ge 1).
From the previous result, G has a leaf u.
Let v be the only neighbour of u.
Let e = \{u, v\} be the connecting edge.
```
Edges in Trees – Proof (2)

Proof (continued).

Consider the graph $G' = (V', E')$ with $V' = V \setminus \{u\}$ and $E' = E \setminus \{e\}.$

- G' is acyclic: every cycle in G' would also be present in G (contradiction).
- G' is connected: for all vertices $w \neq u$ and $w' \neq u$, G has a path π from w to w' because G is connected. Path π cannot include u because u has only one neighbour, so traversing u requires repeating v. Hence π is also a path in $G'.$

Hence G' is a tree with *n* vertices, and we can apply the induction hypothesis, which gives $|E'| = |V'|-1$. It follows that

$$
|E| = |E'| + 1 = (|V'|-1) + 1 = (|V'|+1) - 1 = |V| - 1.
$$

Edges in Forests

Theorem

Let $G = (V, E)$ be a forest. Let C be the set of connected components of G. Then $|E| = |V| - |C|$.

This result generalizes the previous one.

Edges in Forests – Proof

Proof.

Let $C = \{C_1, \ldots, C_k\}$.

For $1 \leq i \leq k$, let $G_i = (C_i, E_i)$ be G restricted to C_i , i.e., the graph whose vertices are C_i and whose edges are the edges $e \in E$ with $e \subseteq \mathcal{C}_i.$ We have $|V|=\sum_{i=1}^k |C_i|$ because the connected components form a partition of V.

We have $|E|=\sum_{i=1}^k |E_i|$ because every edge belongs to exactly one connected component. (Note that there cannot be edges between different connected components.)

Every graph G_i is a tree with at least one vertex:

it is connected because its vertices form a connected component, and it is acyclic because G is. This implies $|E_i|=|{\sf C}_i|-1.$

Putting this together, we get

$$
|E| = \sum_{i=1}^k |E_i| = \sum_{i=1}^k (|C_i| - 1) = \sum_{i=1}^k |C_i| - k = |V| - |C|.
$$

[Characterizations of Trees](#page-24-0)

Characterizations of Trees

Theorem

Let $G = (V, E)$ be a graph with $V \neq \emptyset$. The following statements are equivalent:

- **1** G is a tree.
- **2** G is acyclic and connected.
- **3** G is acyclic and $|E| = |V| 1$.
- \bullet G is connected and $|E| = |V| 1$.
- **5** For all $u, v \in V$ there exists exactly one path from u to v.

Characterizations of Trees – Proof (1)

Reminder:

- (1) G is a tree.
- (2) G is acyclic and connected.
- (3) G is acyclic and $|E| = |V| 1$.
- (4) G is connected and $|E| = |V| 1$.

(5) For all $u, v \in V$ there exists exactly one path from u to v.

Proof.

We know already:

- (1) and (2) are equivalent by definition of trees.
- We have shown that (1) and (5) are equivalent.
- We have shown that (1) implies (3) and (4) .

We complete the proof by showing $(3) \Rightarrow (2)$ and $(4) \Rightarrow (2)$.

Characterizations of Trees – Proof (2)

Reminder:

- (2) G is acyclic and connected.
- (3) G is acyclic and $|E| = |V| 1$.

Proof (continued).

 $(3) \Rightarrow (2)$: Because G is acyclic, it is a forest. From the previous result, we have $|E| = |V| - |C|$, where C are the connected components of G.

Characterizations of Trees – Proof (2)

Reminder:

- (2) G is acyclic and connected.
- (3) G is acyclic and $|E| = |V| 1$.

Proof (continued).

 $(3) \Rightarrow (2)$: Because G is acyclic, it is a forest. From the previous result, we have $|E| = |V| - |C|$, where C are the connected components of G. But we also know $|E| = |V| - 1$. This implies $|C| = 1$. Hence G is connected and therefore a tree.

Characterizations of Trees – Proof (3)

Reminder:

- (2) G is acyclic and connected.
- (4) G is connected and $|E| = |V| 1$.

Proof (continued).

 $(4) \Rightarrow (2)$:

In graphs that are not acyclic, we can remove an edge without changing the connected components: if $\langle v_0, \ldots, v_n, v_0 \rangle$ $(n \ge 2)$ is a cycle, remove the edge $\{v_0, v_1\}$ from the graph. Every walk using this edge can substitute $\langle v_1, \ldots, v_n, v_0 \rangle$ (or the reverse path) for it.

Characterizations of Trees – Proof (3)

Reminder:

- (2) G is acyclic and connected.
- (4) G is connected and $|E| = |V| 1$.

Proof (continued).

 $(4) \Rightarrow (2)$:

In graphs that are not acyclic, we can remove an edge without changing the connected components: if $\langle v_0, \ldots, v_n, v_0 \rangle$ $(n \ge 2)$ is a cycle, remove the edge $\{v_0, v_1\}$ from the graph. Every walk using this edge can substitute $\langle v_1, \ldots, v_n, v_0 \rangle$ (or the reverse path) for it.

Iteratively remove edges from G in this way while preserving connectedness until this is no longer possible. The resulting graph (V, E') is acyclic and connected and therefore a tree.

Characterizations of Trees – Proof (3)

Reminder:

(2) G is acyclic and connected.

(4) G is connected and $|E| = |V| - 1$.

Proof (continued).

 $(4) \Rightarrow (2)$:

In graphs that are not acyclic, we can remove an edge without changing the connected components: if $\langle v_0, \ldots, v_n, v_0 \rangle$ $(n > 2)$ is a cycle, remove the edge $\{v_0, v_1\}$ from the graph. Every walk using this edge can substitute $\langle v_1, \ldots, v_n, v_0 \rangle$ (or the reverse path) for it.

Iteratively remove edges from G in this way while preserving connectedness until this is no longer possible. The resulting graph (V, E') is acyclic and connected and therefore a tree.

This implies $|E'| = |V| - 1$, but we also have $|E| = |V| - 1$. This yields $|E| = |E'|$ and hence $E' = E$: the number of edges removable in this way must be 0 . Hence G is already acyclic.