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Walks, Paths, Tours and Cycles



Traversing Graphs

When dealing with graphs, we are often not just interested
in the neighbours, but also in the neighbours of neighbours,
the neighbours of neighbours of neighbours, etc.

Similarly, for digraphs we often want to follow longer chains
of successors (or chains of predecessors).

Examples:

circuits: follow predecessors of signals to identify
possible causes of faulty signals

pathfinding: follow edges/arcs to find paths

control flow graphs: follow arcs to identify dead code

computer networks: determine if part of the network
is unreachable
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Walks

Definition (Walk)

A walk of length n in a graph (V ,E ) is a tuple
⟨v0, v1, . . . , vn⟩ ∈ V n+1 s.t. {vi , vi+1} ∈ E for all 0 ≤ i < n.

A walk of length n in a digraph (N,A) is a tuple
⟨v0, v1, . . . , vn⟩ ∈ Nn+1 s.t. (vi , vi+1) ∈ A for all 0 ≤ i < n.

German: Wanderung

Notes:

The length of the walk does not equal the length of the tuple!

The case n = 0 is allowed.

Vertices may repeat along a walk.



Walks – Example
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examples of walks:

⟨B,C,A⟩
⟨B,C,A,B⟩
⟨D,F,D⟩
⟨B,A,B,C,E⟩
⟨B⟩

examples of walks:

⟨4, 4, 4, 4⟩
⟨3, 5, 3, 5⟩
⟨2, 1, 3⟩
⟨4⟩
⟨4, 4⟩



Walks – Terminology

Definition

Let π = ⟨v0, . . . , vn⟩ be a walk in a graph or digraph G .

We say π is a walk from v0 to vn.

A walk with vi ̸= vj for all 0 ≤ i < j ≤ n is called a path.

A walk of length 0 is called an empty walk/path.

A walk with v0 = vn is called a tour.

A tour with n ≥ 1 (digraphs) or n ≥ 3 (graphs)
and vi ̸= vj for all 1 ≤ i < j ≤ n is called a cycle.

German: von/nach, Pfad, leer, Tour, Zyklus

Note: Terminology is not very consistent in the literature.



Walks, Paths, Tours, Cycles – Example
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Which walks are paths, tours, cycles?

⟨B,C,A⟩
⟨B,C,A,B⟩
⟨D,F,D⟩
⟨B,A,B,C,E⟩
⟨B⟩

⟨4, 4, 4, 4⟩
⟨3, 5, 3, 5⟩
⟨2, 1, 3⟩
⟨4⟩
⟨4, 4⟩



Reachability



Reachability

Definition (successor and reachability)

Let G be a graph (digraph).
The successor relation SG and reachability relation RG

are relations over the vertices/nodes of G defined as follows:

(u, v) ∈ SG iff {u, v} is an edge ((u, v) is an arc) of G

(u, v) ∈ RG iff there exists a walk from u to v

If (u, v) ∈ RG , we say that v is reachable from u.

German: Nachfolger-/Erreichbarkeitsrelation, erreichbar



Reachability as Closure

Recall the n-fold composition Rn of a relation R over set S
(Chapter B4):

R0 = {(x , x) | x ∈ S}
Rn = R ◦ Rn−1 for n ≥ 1

Theorem

Let G be a graph or digraph. Then:
(u, v) ∈ SnG iff there exists a walk of length n from u to v.

Corollary

Let G be a graph or digraph. Then RG =
⋃∞

n=0(SG )n.

In other words, the reachability relation is the reflexive transitive
closure of the successor relation.



Reachability as Closure – Proof (1)

Proof.

To simplify notation, we assume G = (N,A) is a digraph.
Graphs are analogous.
Proof by induction over n.

induction base (n = 0):
By definition of the 0-fold composition, we have (u, v) ∈ (SG )0 iff
u = v , and a walk of length 0 from u to v exists iff u = v .
Hence, the two conditions are equivalent.

. . .



Reachability as Closure – Proof (1)

Proof.

To simplify notation, we assume G = (N,A) is a digraph.
Graphs are analogous.
Proof by induction over n.

induction base (n = 0):
By definition of the 0-fold composition, we have (u, v) ∈ (SG )0 iff
u = v , and a walk of length 0 from u to v exists iff u = v .
Hence, the two conditions are equivalent. . . .



Reachability as Closure – Proof (2)

Proof (continued).

induction step (n → n + 1):

(⇒) : Let (u, v) ∈ (SG )n+1.
By definition of Rn+1, we get (u, v) ∈ SG ◦ (SG )n.
By definition of ◦ there exists w with (u,w) ∈ (SG )n and
(w , v) ∈ SG .
From the induction hypothesis, there exists a length-n walk
⟨x0, . . . , xn⟩ with x0 = u and xn = w .
Then ⟨x0, . . . , xn, v⟩ is a length-(n + 1) walk from u to v .

(⇐) : Let ⟨x0, . . . , xn+1⟩ be a length-(n + 1) walk from u to v
(x0 = u, xn+1 = v). Then (xn, xn+1) = (xn, v) ∈ A.
Also, ⟨x0, . . . , xn⟩ is a length-n walk from x0 to xn.
From the IH we get (u, xn) = (x0, xn) ∈ (SG )n.
Together with (xn, v) ∈ SG this shows
(u, v) ∈ SG ◦ (SG )n = (SG )n+1.
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Connected Components



Overview

In this section, we study reachability of graphs in more depth.

We show that it makes no difference whether we define
reachability in terms of walks or paths, and that reachability
in graphs is an equivalence relation.

This leads to the connected components of a graph.

In digraphs, reachability is not always an equivalence relation.

However, we can define two variants of reachability that
give rise to weakly or strongly connected components.



Walks vs. Paths

Theorem

Let G be a graph or digraph.
There exists a path from u to v iff there exists a walk from u to v.

In other words, there is a path from u to v iff v is reachable from u.

Proof.

(⇒): obvious because paths are special cases of walks

(⇐): Proof by contradiction. Assume there exist u, v such that
there exists a walk from u to v , but no path. Let π = ⟨w0, . . . ,wn⟩
be such a counterexample walk of minimal length.
Because π is not a path, some vertex/node must repeat.
Select i and j with i < j and wi = wj .
Then π′ = ⟨w0, . . . ,wi ,wj+1, . . . ,wn⟩ also is a walk from u to v .
If π′ is a path, we have a contradiction.
If not, it is a shorter counterexample: also a contradiction.
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Reachability in Graphs is an Equivalence Relation

Theorem

For every graph G, the reachability relation RG

is an equivalence relation.

In directed graphs, this result does not hold (easy to see).

Proof.

We already know reachability is reflexive and transitive.
To prove symmetry:

(u, v) ∈ RG

⇒ there is a walk ⟨w0, . . . ,wn⟩ from u to v

⇒ ⟨wn, . . . ,w0⟩ is a walk from v to u

⇒ (v , u) ∈ RG



Connected Components

Definition (connected components, connected)

In a graph G , the equivalence classes
of the reachability relation of G
are called the connected components of G .

A graph is called connected if it has at most 1
connected component.

German: Zusammenhangskomponenten, zusammenhängend

Remark: The graph (∅, ∅) has 0 connected components.
It is the only such graph.



Weakly Connected Components

Definition (weakly connected components, weakly connected)

In a digraph G , the equivalence classes
of the reachability relation of the induced graph of G
are called the weakly connected components of G .

A digraph is called weakly connected if it has at most 1
weakly connected component.

German: schwache Zshk., schwach zusammenhängend

Remark: The digraph (∅, ∅) has 0 weakly connected components.
It is the only such digraph.



(Weakly) Connected Components – Example
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connected components:

{A,B,C,E}
{D,F}
{G}

weakly connected components:

{1, 2, 3, 4, 5}
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Mutual Reachability

Definition (mutually reachable)

Let G be a graph or digraph.
Vertices/nodes u and v in G are called mutually reachable
if v is reachable from u and u is reachable from v .
We write MG for the mutual reachability relation of G

German: gegenseitig erreichbar

Note: In graphs, MG = RG . (Why?)



Mutual Reachability is an Equivalence Relation

Theorem

For every digraph G, the mutual reachability relation MG

is an equivalence relation.

Proof.

Note that (u, v) ∈ MG iff (u, v) ∈ RG and (v , u) ∈ RG .

reflexivity: for all v , we have (v , v) ∈ MG because (v , v) ∈ RG

symmetry: Let (u, v) ∈ MG . Then (v , u) ∈ MG is obvious.

transitivity: Let (u, v) ∈ MG and (v ,w) ∈ MG .
Then: (u, v) ∈ RG , (v , u) ∈ RG , (v ,w) ∈ RG , (w , v) ∈ RG .
Transitivity of RG yields (u,w) ∈ RG and (w , u) ∈ RG ,
and hence (u,w) ∈ MG .



Mutual Reachability is an Equivalence Relation

Theorem

For every digraph G, the mutual reachability relation MG

is an equivalence relation.

Proof.

Note that (u, v) ∈ MG iff (u, v) ∈ RG and (v , u) ∈ RG .

reflexivity: for all v , we have (v , v) ∈ MG because (v , v) ∈ RG

symmetry: Let (u, v) ∈ MG . Then (v , u) ∈ MG is obvious.

transitivity: Let (u, v) ∈ MG and (v ,w) ∈ MG .
Then: (u, v) ∈ RG , (v , u) ∈ RG , (v ,w) ∈ RG , (w , v) ∈ RG .
Transitivity of RG yields (u,w) ∈ RG and (w , u) ∈ RG ,
and hence (u,w) ∈ MG .



Mutual Reachability is an Equivalence Relation

Theorem

For every digraph G, the mutual reachability relation MG

is an equivalence relation.

Proof.

Note that (u, v) ∈ MG iff (u, v) ∈ RG and (v , u) ∈ RG .

reflexivity: for all v , we have (v , v) ∈ MG because (v , v) ∈ RG

symmetry: Let (u, v) ∈ MG . Then (v , u) ∈ MG is obvious.

transitivity: Let (u, v) ∈ MG and (v ,w) ∈ MG .
Then: (u, v) ∈ RG , (v , u) ∈ RG , (v ,w) ∈ RG , (w , v) ∈ RG .
Transitivity of RG yields (u,w) ∈ RG and (w , u) ∈ RG ,
and hence (u,w) ∈ MG .



Mutual Reachability is an Equivalence Relation

Theorem

For every digraph G, the mutual reachability relation MG

is an equivalence relation.

Proof.

Note that (u, v) ∈ MG iff (u, v) ∈ RG and (v , u) ∈ RG .

reflexivity: for all v , we have (v , v) ∈ MG because (v , v) ∈ RG

symmetry: Let (u, v) ∈ MG . Then (v , u) ∈ MG is obvious.

transitivity: Let (u, v) ∈ MG and (v ,w) ∈ MG .
Then: (u, v) ∈ RG , (v , u) ∈ RG , (v ,w) ∈ RG , (w , v) ∈ RG .
Transitivity of RG yields (u,w) ∈ RG and (w , u) ∈ RG ,
and hence (u,w) ∈ MG .



Strongly Connected Components

Definition (strongly connected components, strongly connected)

In a digraph G , the equivalence classes
of the mutual reachability relation
are called the strongly connected components of G .

A digraph is called strongly connected if it has at most 1
strongly connected component.

German: starke Zshk., stark zusammenhängend

Remark: The digraph (∅, ∅) has 0 strongly connected components.
It is the only such digraph.



Strongly Connected Components – Example
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strongly connected components:

{1, 2}
{3, 4, 5}
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