Discrete Mathematics in Computer Science C2. Paths and Connectivity

Malte Helmert, Gabriele Röger

University of Basel

November 11, 2024

Walks, Paths, Tours and Cycles

Traversing Graphs

- When dealing with graphs, we are often not just interested in the neighbours, but also in the neighbours of neighbours, the neighbours of neighbours of neighbours, etc.
- Similarly, for digraphs we often want to follow longer chains of successors (or chains of predecessors).

Traversing Graphs

- When dealing with graphs, we are often not just interested in the neighbours, but also in the neighbours of neighbours, the neighbours of neighbours of neighbours, etc.
- Similarly, for digraphs we often want to follow longer chains of successors (or chains of predecessors).

Examples:

- circuits: follow predecessors of signals to identify possible causes of faulty signals
- pathfinding: follow edges/arcs to find paths
- control flow graphs: follow arcs to identify dead code
- computer networks: determine if part of the network is unreachable

Walks

Definition (Walk)

A walk of length *n* in a graph (V, E) is a tuple $\langle v_0, v_1, \ldots, v_n \rangle \in V^{n+1}$ s.t. $\{v_i, v_{i+1}\} \in E$ for all $0 \le i < n$. A walk of length *n* in a digraph (N, A) is a tuple $\langle v_0, v_1, \ldots, v_n \rangle \in N^{n+1}$ s.t. $(v_i, v_{i+1}) \in A$ for all $0 \le i < n$.

German: Wanderung

Notes:

- The length of the walk does not equal the length of the tuple!
- The case n = 0 is allowed.
- Vertices may repeat along a walk.

Walks – Example

examples of walks:

- $\blacksquare \ \langle \mathsf{B},\mathsf{C},\mathsf{A}\rangle$
- $\langle \mathsf{B},\mathsf{C},\mathsf{A},\mathsf{B}\rangle$
- $\langle \mathsf{D},\mathsf{F},\mathsf{D}\rangle$
- $\langle \mathsf{B}, \mathsf{A}, \mathsf{B}, \mathsf{C}, \mathsf{E} \rangle$

(B)

2

examples of walks:

- 〈4, 4, 4, 4〉
- ⟨3, 5, 3, 5⟩
- ⟨2, 1, 3⟩
- (4)
- (4, 4)

Walks – Terminology

Definition

Let $\pi = \langle v_0, \ldots, v_n \rangle$ be a walk in a graph or digraph *G*.

- We say π is a walk from v_0 to v_n .
- A walk with $v_i \neq v_j$ for all $0 \leq i < j \leq n$ is called a path.
- A walk of length 0 is called an empty walk/path.
- A walk with $v_0 = v_n$ is called a tour.
- A tour with $n \ge 1$ (digraphs) or $n \ge 3$ (graphs) and $v_i \ne v_j$ for all $1 \le i < j \le n$ is called a cycle.

German: von/nach, Pfad, leer, Tour, Zyklus

Note: Terminology is not very consistent in the literature.

Walks, Paths, Tours, Cycles - Example

Which walks are paths, tours, cycles?

- $\langle \mathsf{B},\mathsf{C},\mathsf{A}\rangle$
- $\langle \mathsf{B},\mathsf{C},\mathsf{A},\mathsf{B}\rangle$
- $\blacksquare \langle \mathsf{D},\mathsf{F},\mathsf{D}\rangle$

(B)

• $\langle \mathsf{B}, \mathsf{A}, \mathsf{B}, \mathsf{C}, \mathsf{E} \rangle$

- \[
 \lapha 4, 4, 4, 4
 \]
 \]
- ⟨3, 5, 3, 5⟩
- (2, 1, 3)
- 4
- $\langle 4,4 \rangle$

Reachability

Reachability

Definition (successor and reachability)

Let G be a graph (digraph). The successor relation S_G and reachability relation R_G are relations over the vertices/nodes of G defined as follows:

- $(u, v) \in S_G$ iff $\{u, v\}$ is an edge ((u, v) is an arc) of G
- $(u, v) \in \mathsf{R}_{G}$ iff there exists a walk from u to v

If $(u, v) \in \mathsf{R}_{\mathcal{G}}$, we say that v is reachable from u.

German: Nachfolger-/Erreichbarkeitsrelation, erreichbar

Reachability as Closure

Recall the *n*-fold composition R_n of a relation R over set S (Chapter B4):

■
$$R_0 = \{(x, x) \mid x \in S\}$$

•
$$R_n = R \circ R_{n-1}$$
 for $n \ge 1$

Theorem

Let G be a graph or digraph. Then: $(u, v) \in S_G^n$ iff there exists a walk of length n from u to v.

Corollary

Let G be a graph or digraph. Then
$$R_G = \bigcup_{n=0}^{\infty} (S_G)_n$$
.

In other words, the reachability relation is the reflexive transitive closure of the successor relation.

Reachability as Closure – Proof (1)

Proof.

To simplify notation, we assume G = (N, A) is a digraph. Graphs are analogous. Proof by induction over n. Reachability as Closure – Proof (1)

Proof.

To simplify notation, we assume G = (N, A) is a digraph. Graphs are analogous. Proof by induction over n.

induction base (n = 0):

By definition of the 0-fold composition, we have $(u, v) \in (S_G)_0$ iff u = v, and a walk of length 0 from u to v exists iff u = v. Hence, the two conditions are equivalent.

Reachability as Closure – Proof (2)

Proof (continued).

induction step $(n \rightarrow n+1)$:

Reachability as Closure – Proof (2)

Proof (continued).

induction step $(n \rightarrow n+1)$:

(⇒) : Let $(u, v) \in (S_G)_{n+1}$. By definition of R_{n+1} , we get $(u, v) \in S_G \circ (S_G)_n$. By definition of \circ there exists w with $(u, w) \in (S_G)_n$ and $(w, v) \in S_G$. From the induction hypothesis, there exists a length-n walk $\langle x_0, \ldots, x_n \rangle$ with $x_0 = u$ and $x_n = w$. Then $\langle x_0, \ldots, x_n, v \rangle$ is a length-(n + 1) walk from u to v.

Reachability as Closure – Proof (2)

Proof (continued).

induction step $(n \rightarrow n+1)$:

 (\Rightarrow) : Let $(u, v) \in (S_G)_{n+1}$. By definition of R_{n+1} , we get $(u, v) \in S_G \circ (S_G)_n$. By definition of \circ there exists w with $(u, w) \in (S_G)_n$ and $(w, v) \in S_G$. From the induction hypothesis, there exists a length-n walk $\langle x_0, \ldots, x_n \rangle$ with $x_0 = u$ and $x_n = w$. Then $\langle x_0, \ldots, x_n, v \rangle$ is a length-(n+1) walk from u to v. (\Leftarrow) : Let $\langle x_0, \ldots, x_{n+1} \rangle$ be a length-(n+1) walk from u to v $(x_0 = u, x_{n+1} = v)$. Then $(x_n, x_{n+1}) = (x_n, v) \in A$. Also, $\langle x_0, \ldots, x_n \rangle$ is a length-*n* walk from x_0 to x_n . From the IH we get $(u, x_n) = (x_0, x_n) \in (S_G)_n$. Together with $(x_n, v) \in S_G$ this shows $(u, v) \in S_G \circ (S_G)_n = (S_G)_{n+1}$

Connected Components

Overview

- In this section, we study reachability of graphs in more depth.
- We show that it makes no difference whether we define reachability in terms of walks or paths, and that reachability in graphs is an equivalence relation.
- This leads to the connected components of a graph.
- In digraphs, reachability is not always an equivalence relation.
- However, we can define two variants of reachability that give rise to weakly or strongly connected components.

Walks vs. Paths

Theorem

Let G be a graph or digraph. There exists a path from u to v iff there exists a walk from u to v.

In other words, there is a path from u to v iff v is reachable from u.

Walks vs. Paths

Theorem

Let G be a graph or digraph.

There exists a path from u to v iff there exists a walk from u to v.

In other words, there is a path from u to v iff v is reachable from u.

Proof.

 (\Rightarrow) : obvious because paths are special cases of walks

(\Leftarrow): Proof by contradiction. Assume there exist u, v such that there exists a walk from u to v, but no path. Let $\pi = \langle w_0, \ldots, w_n \rangle$ be such a counterexample walk of minimal length. Because π is not a path, some vertex/node must repeat. Select i and j with i < j and $w_i = w_j$. Then $\pi' = \langle w_0, \ldots, w_i, w_{j+1}, \ldots, w_n \rangle$ also is a walk from u to v. If π' is a path, we have a contradiction. If not, it is a shorter counterexample: also a contradiction.

Reachability in Graphs is an Equivalence Relation

Theorem

For every graph G, the reachability relation R_G is an equivalence relation.

In directed graphs, this result does not hold (easy to see).

Proof.

We already know reachability is reflexive and transitive. To prove symmetry:

 $(u, v) \in \mathsf{R}_{G}$ \Rightarrow there is a walk $\langle w_0, \dots, w_n \rangle$ from u to v $\Rightarrow \langle w_n, \dots, w_0 \rangle$ is a walk from v to u $\Rightarrow (v, u) \in \mathsf{R}_{G}$

Connected Components

Definition (connected components, connected)

In a graph *G*, the equivalence classes of the reachability relation of *G* are called the connected components of *G*. A graph is called connected if it has at most 1 connected component.

German: Zusammenhangskomponenten, zusammenhängend

Remark: The graph (\emptyset, \emptyset) has 0 connected components. It is the only such graph.

Weakly Connected Components

Definition (weakly connected components, weakly connected)

In a digraph *G*, the equivalence classes of the reachability relation of the induced graph of *G* are called the weakly connected components of *G*. A digraph is called weakly connected if it has at most 1

weakly connected component.

German: schwache Zshk., schwach zusammenhängend

Remark: The digraph (\emptyset, \emptyset) has 0 weakly connected components. It is the only such digraph.

(Weakly) Connected Components – Example

(Weakly) Connected Components – Example

connected components:

- {A, B, C, E}
- {D,F}
- ∎ {G}

weakly connected components:

1,2,3,4,5

Mutual Reachability

Definition (mutually reachable)

Let G be a graph or digraph. Vertices/nodes u and v in G are called mutually reachable if v is reachable from u and u is reachable from v. We write M_G for the mutual reachability relation of G

German: gegenseitig erreichbar

Note: In graphs, $M_G = R_G$. (Why?)

Theorem

For every digraph G, the mutual reachability relation M_G is an equivalence relation.

Theorem

For every digraph G, the mutual reachability relation M_G is an equivalence relation.

Proof.

Note that $(u, v) \in M_G$ iff $(u, v) \in R_G$ and $(v, u) \in R_G$. reflexivity: for all v, we have $(v, v) \in M_G$ because $(v, v) \in R_G$.

Theorem

For every digraph G, the mutual reachability relation M_G is an equivalence relation.

Proof.

Note that $(u, v) \in M_G$ iff $(u, v) \in R_G$ and $(v, u) \in R_G$.

- reflexivity: for all v, we have $(v, v) \in M_G$ because $(v, v) \in R_G$
- symmetry: Let $(u, v) \in M_G$. Then $(v, u) \in M_G$ is obvious.

Theorem

For every digraph G, the mutual reachability relation M_G is an equivalence relation.

Proof.

Note that $(u, v) \in M_G$ iff $(u, v) \in R_G$ and $(v, u) \in R_G$.

- reflexivity: for all v, we have $(v, v) \in M_G$ because $(v, v) \in R_G$
- symmetry: Let $(u, v) \in M_G$. Then $(v, u) \in M_G$ is obvious.
- transitivity: Let $(u, v) \in M_G$ and $(v, w) \in M_G$. Then: $(u, v) \in R_G$, $(v, u) \in R_G$, $(v, w) \in R_G$, $(w, v) \in R_G$. Transitivity of R_G yields $(u, w) \in R_G$ and $(w, u) \in R_G$, and hence $(u, w) \in M_G$.

Strongly Connected Components

Definition (strongly connected components, strongly connected)

In a digraph *G*, the equivalence classes of the mutual reachability relation are called the strongly connected components of *G*. A digraph is called strongly connected if it has at most 1 strongly connected component.

German: starke Zshk., stark zusammenhängend

Remark: The digraph (\emptyset, \emptyset) has 0 strongly connected components. It is the only such digraph.

Strongly Connected Components – Example

Strongly Connected Components – Example

strongly connected components:

- **1**,2
- {3,4,5}