

Discrete Mathematics in Computer Science November 11, 2024 — C2. Paths and Connectivity	9	
C2.1 Walks, Paths, Tours and Cycles		
C2.2 Reachability		
C2.3 Connected Components		
N. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science	November 11, 2024	2 / 24

Traversing Graphs

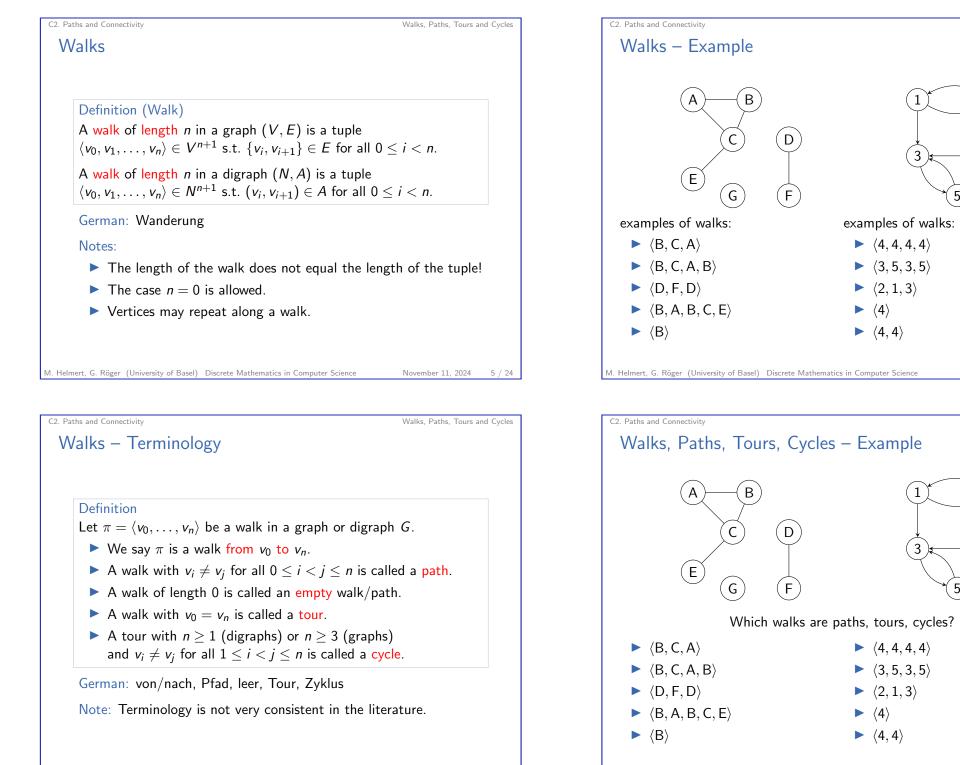
C2. Paths and Connectivity

- When dealing with graphs, we are often not just interested in the neighbours, but also in the neighbours of neighbours, the neighbours of neighbours of neighbours, etc.
- Similarly, for digraphs we often want to follow longer chains of successors (or chains of predecessors).

Examples:

- circuits: follow predecessors of signals to identify possible causes of faulty signals
- pathfinding: follow edges/arcs to find paths
- control flow graphs: follow arcs to identify dead code
- computer networks: determine if part of the network is unreachable

Walks, Paths, Tours and Cycles



M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

November 11, 2024 8 / 24

Walks, Paths, Tours and Cycles

2

November 11, 2024

2

Walks, Paths, Tours and Cycles

6 / 24

November 11, 2024 7 / 24

Reachability

C2.2 Reachability

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

C2. Paths and Connectivity

Reachability as Closure

Recall the *n*-fold composition R_n of a relation R over set S (Chapter B4):

- ► $R_0 = \{(x, x) \mid x \in S\}$
- ▶ $R_n = R \circ R_{n-1}$ for $n \ge 1$

Theorem

Let G be a graph or digraph. Then: $(u, v) \in S_G^n$ iff there exists a walk of length n from u to v.

Corollary

Let G be a graph or digraph. Then $R_G = \bigcup_{n=0}^{\infty} (S_G)_n$.

In other words, the reachability relation is the reflexive transitive closure of the successor relation.

November 11, 2024

9 / 24

Reachability

C2. Paths and Connectivity

Reachability

Definition (successor and reachability)

Let G be a graph (digraph).

The successor relation S_G and reachability relation R_G are relations over the vertices/nodes of G defined as follows:

- ▶ $(u, v) \in S_G$ iff $\{u, v\}$ is an edge ((u, v) is an arc) of G
- (u, v) $\in \mathsf{R}_G$ iff there exists a walk from u to v

If $(u, v) \in \mathsf{R}_{\mathsf{G}}$, we say that v is reachable from u.

German: Nachfolger-/Erreichbarkeitsrelation, erreichbar

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

November 11, 2024 10 / 24

Reachabilit

Reachability as Closure – Proof (1)

Proof.

To simplify notation, we assume G = (N, A) is a digraph. Graphs are analogous. Proof by induction over n.

induction base (n = 0):

By definition of the 0-fold composition, we have $(u, v) \in (S_G)_0$ iff u = v, and a walk of length 0 from u to v exists iff u = v. Hence, the two conditions are equivalent.

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

C2. Paths and Connectivity

Reachability as Closure - Proof (2)

Proof (continued). induction step $(n \rightarrow n+1)$: (\Rightarrow) : Let $(u, v) \in (S_G)_{n+1}$. By definition of R_{n+1} , we get $(u, v) \in S_G \circ (S_G)_n$. By definition of \circ there exists w with $(u, w) \in (S_G)_n$ and $(w, v) \in S_G$. From the induction hypothesis, there exists a length-n walk $\langle x_0, \ldots, x_n \rangle$ with $x_0 = u$ and $x_n = w$. Then $\langle x_0, \ldots, x_n, v \rangle$ is a length-(n+1) walk from u to v. (\Leftarrow) : Let $\langle x_0, \ldots, x_{n+1} \rangle$ be a length-(n+1) walk from u to v $(x_0 = u, x_{n+1} = v)$. Then $(x_n, x_{n+1}) = (x_n, v) \in A$. Also, $\langle x_0, \ldots, x_n \rangle$ is a length-*n* walk from x_0 to x_n . From the IH we get $(u, x_n) = (x_0, x_n) \in (S_G)_n$. Together with $(x_n, v) \in S_G$ this shows $(u, v) \in S_G \circ (S_G)_n = (S_G)_{n+1}$ A. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science November 11, 2024 13 / 24

C2. Paths and Connectivity

Connected Components

Reachability

Overview

- ▶ In this section, we study reachability of graphs in more depth.
- We show that it makes no difference whether we define reachability in terms of walks or paths, and that reachability in graphs is an equivalence relation.
- ▶ This leads to the connected components of a graph.
- ▶ In digraphs, reachability is not always an equivalence relation.
- However, we can define two variants of reachability that give rise to weakly or strongly connected components.

C2.3 Connected Components

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

Connected Components

14 / 24

November 11, 2024

Connected Components

Walks vs. Paths

Theorem

C2. Paths and Connectivity

C2. Paths and Connectivity

Let G be a graph or digraph.

There exists a path from u to v iff there exists a walk from u to v.

In other words, there is a path from u to v iff v is reachable from u.

Proof.

 (\Rightarrow) : obvious because paths are special cases of walks

(\Leftarrow): Proof by contradiction. Assume there exist u, v such that there exists a walk from u to v, but no path. Let $\pi = \langle w_0, \ldots, w_n \rangle$ be such a counterexample walk of minimal length. Because π is not a path, some vertex/node must repeat. Select i and j with i < j and $w_i = w_j$. Then $\pi' = \langle w_0, \ldots, w_i, w_{j+1}, \ldots, w_n \rangle$ also is a walk from u to v. If π' is a path, we have a contradiction.

C2. Paths and Connectivity

Connected Components

17 / 24

November 11, 2024

Reachability in Graphs is an Equivalence Relation

Theorem

For every graph G, the reachability relation R_G is an equivalence relation.

In directed graphs, this result does not hold (easy to see).

Proof.

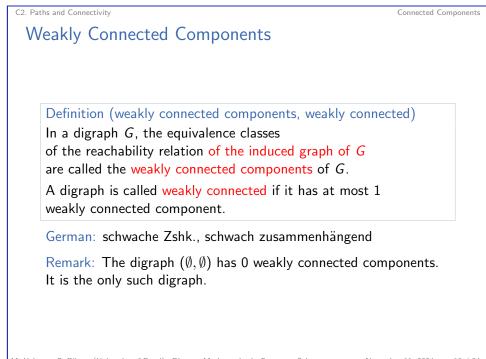
We already know reachability is reflexive and transitive. To prove symmetry:

$(u, v) \in \mathsf{R}_{G}$

 \Rightarrow there is a walk $\langle w_0, \ldots, w_n \rangle$ from *u* to *v*

- $\Rightarrow \langle w_n, \dots, w_0
 angle$ is a walk from v to u
- \Rightarrow (v, u) $\in \mathsf{R}_{G}$

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science



C2. Paths and Connectivity

Connected Components

Definition (connected components, connected) In a graph G, the equivalence classes of the reachability relation of Gare called the connected components of G.

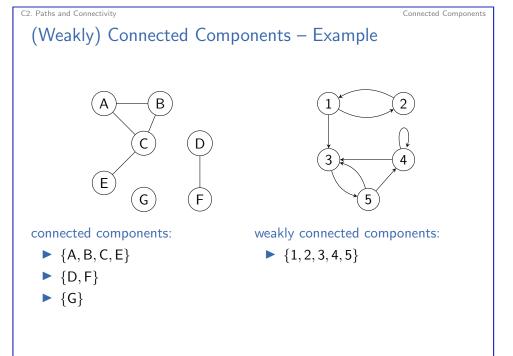
A graph is called **connected** if it has at most 1 connected component.

German: Zusammenhangskomponenten, zusammenhängend

Remark: The graph (\emptyset, \emptyset) has 0 connected components. It is the only such graph.

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

November 11, 2024 18 / 24



November 11, 2024

November 11, 2024

23 / 24

21 / 24

Mutual Reachability

Definition (mutually reachable)

Let G be a graph or digraph. Vertices/nodes u and v in G are called mutually reachable if v is reachable from u and u is reachable from v. We write M_G for the mutual reachability relation of G

German: gegenseitig erreichbar

Note: In graphs, $M_G = R_G$. (Why?)

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

C2. Paths and Connectivity Connected Components Strongly Connected Components Definition (strongly connected components, strongly connected) In a digraph G, the equivalence classes of the mutual reachability relation are called the strongly connected components of G. A digraph is called strongly connected if it has at most 1 strongly connected component. German: starke Zshk., stark zusammenhängend Remark: The digraph (\emptyset, \emptyset) has 0 strongly connected components. It is the only such digraph. C2. Paths and Connectivity

Mutual Reachability is an Equivalence Relation

Theorem

For every digraph G, the mutual reachability relation M_G is an equivalence relation.

Proof.

Note that $(u, v) \in M_G$ iff $(u, v) \in R_G$ and $(v, u) \in R_G$.

- ▶ reflexivity: for all v, we have $(v, v) \in M_G$ because $(v, v) \in R_G$
- ▶ symmetry: Let $(u, v) \in M_G$. Then $(v, u) \in M_G$ is obvious.
- ▶ transitivity: Let $(u, v) \in M_G$ and $(v, w) \in M_G$. Then: $(u, v) \in R_G$, $(v, u) \in R_G$, $(v, w) \in R_G$, $(w, v) \in R_G$. Transitivity of R_G yields $(u, w) \in R_G$ and $(w, u) \in R_G$, and hence $(u, w) \in M_G$.

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

November 11, 2024 22 / 24

