Discrete Mathematics in Computer Science B8. Cantor's Theorem

Malte Helmert, Gabriele Röger

University of Basel

October 30, 2024

Discrete Mathematics in Computer Science October 30, 2024 — B8. Cantor's Theorem

B8.1 Cantor's Theorem

B8.2 Consequences of Cantor's Theorem

B8.3 Sets: Summary

B8.4 Outlook: Finite Sets and Computer Science

Reminder: Cardinality of the Power Set

Theorem

Let S be a finite set. Then $|\mathcal{P}(S)| = 2^{|S|}$.

B8.1 Cantor's Theorem

Countable Sets

We already know:

- \triangleright Sets with the same cardinality as \mathbb{N}_0 are called countably infinite.
- A countable set is finite or countably infinite.
- Every subset of a countable set is countable.
- The union of countably many countable sets is countable.

Open questions (to be resolved today):

- Do all infinite sets have the same cardinality?
- Does the power set of an infinite set S have the same cardinality as S?

Georg Cantor

- ► German mathematician (1845–1918)
- Proved that the rational numbers are countable.
- Proved that the real numbers are not countable.
- ► Cantor's Theorem: For every set S it holds that $|S| < |\mathcal{P}(S)|$.

Our Plan

- Understand Cantor's theorem
- Understand an important theoretical implication for computer science

Cantor's Diagonal Argument Illustrated on a Finite Set

$$S = \{a, b, c\}.$$

Consider an arbitrary function from S to $\mathcal{P}(S)$.

For example:

We can identify an "unused" element of $\mathcal{P}(S)$. Complement the entries on the main diagonal.

Works with every function from S to $\mathcal{P}(S)$.

- \rightarrow there cannot be a surjective function from S to $\mathcal{P}(S)$.
- \rightarrow there cannot be a bijection from S to $\mathcal{P}(S)$.

Cantor's Diagonal Argument on a Countably Infinite Set

$$S=\mathbb{N}_0$$
.

Consider an arbitrary function from \mathbb{N}_0 to $\mathcal{P}(\mathbb{N}_0)$. For example:

Complementing the entries on the main diagonal again results in an "unused" element of $\mathcal{P}(\mathbb{N}_0)$.

Cantor's Theorem

Theorem (Cantor's Theorem)

For every set S it holds that $|S| < |\mathcal{P}(S)|$.

Proof.

Consider an arbitrary set S. We need to show that

- **1** There is an injective function from S to $\mathcal{P}(S)$.
- ② There is no bijection from S to $\mathcal{P}(S)$.

For 1, consider function $f: S \to \mathcal{P}(S)$ with $f(x) = \{x\}$. It maps distinct elements of S to distinct elements of $\mathcal{P}(S)$

Cantor's Theorem

Proof (continued).

We show 2 by contradiction.

Assume there is a bijection f from S to $\mathcal{P}(S)$.

Consider $M = \{x \mid x \in S, x \notin f(x)\}$ and note that $M \in \mathcal{P}(S)$.

Since f is bijective, it is surjective and there is an $x \in S$ with f(x) = M. Consider this x in a case distinction:

If $x \in M$ then $x \notin f(x)$ by the definition of M. Since f(x) = Mthis implies $x \notin M$. \rightsquigarrow contradiction

If $x \notin M$, we conclude from f(x) = M that $x \notin f(x)$. Using the definition of M we get that $x \in M$. \rightsquigarrow contradiction

Since all cases lead to a contradiction, there is no such x and thus f is not surjective and consequently not a bijection.

The assumption was false and we conclude that there is no bijection from S to $\mathcal{P}(S)$.

B8.2 Consequences of Cantor's Theorem

Infinite Sets can Have Different Cardinalities

There are infinitely many different cardinalities of infinite sets:

- $|\mathbb{N}_0| < |\mathcal{P}(\mathbb{N}_0)| < |\mathcal{P}(\mathcal{P}(\mathbb{N}_0))| < \dots$
- $|\mathbb{N}_0| = \aleph_0 = \beth_0$
- $ightharpoonup |\mathcal{P}(\mathbb{N}_0)| = \beth_1 (= |\mathbb{R}|)$
- $\triangleright |\mathcal{P}(\mathcal{P}(\mathbb{N}_0))| = \beth_2$
- **.** . . .

Existence of Unsolvable Problems

There are more problems in computer science than there are programs to solve them.

There are problems that cannot be solved by a computer program!

Why can we say so?

Decision Problems

"Intuitive Definition:" Decision Problem A decision problem is a Yes-No question of the form "Does the given input have a certain property?"

- ► "Does the given binary tree have more than three leaves?"
- "Is the given integer odd?"
- "Given a train schedule, is there a connection from Basel to Belinzona that takes at most 2.5 hours?"
- Input can be encoded as some finite string.
- Problem can also be represented as the (possibly infinite) set of all input strings where the answer is "yes".
- ► A computer program solves a decision problem if it terminates on every input and returns the correct answer.

More Problems than Programs I

- ► A computer program is given by a finite string.
- ▶ A decision problem corresponds to a set of strings.

More Problems than Programs II

- \triangleright Consider an arbitrary finite set of symbols (an alphabet) Σ .
- ightharpoonup You can think of $\Sigma = \{0, 1\}$ as internally computers operate on binary representation.
- Let S be the set of all finite strings made from symbols in Σ .
- ► There are at most | S | computer programs with this alphabet.
- ▶ There are at least $|\mathcal{P}(S)|$ problems with this alphabet.
 - every subset of S corresponds to a separate decision problem
- ▶ By Cantor's theorem |S| < |P(S)|, so there are more problems than programs.

17 / 22

B8. Cantor's Theorem Sets: Summary

B8.3 Sets: Summary

B8. Cantor's Theorem Sets: Summary

Summary

- ▶ Cantor's theorem: For all sets S it holds that |S| < |P(S)|.
- ► There are problems that cannot be solved by a computer program.

19 / 22

B8.4 Outlook: Finite Sets and Computer Science

Enumerating all Subsets

Determine a one-to-one mapping between numbers $0, \dots, 2^{|S|} - 1$ and all subsets of finite set S:

$$S = \{a, b, c\}$$

- Consider the binary representation of numbers $0, \ldots, 2^{|S|} 1$.
- Associate every bit with a different element of *S*.
- Every number is mapped to the set that contains exactly the elements associated with the 1-bits.

set	binary	decimal
	abc	
{}	000	0
{ <i>c</i> }	001	1
{b}	010	2
$\{b,c\}$	011	3
{a}	100	4
$\{a,c\}$	101	5
$\{a,b\}$	110	6
$\{a, b, c\}$	111	7

Computer Representation as Bit String

Same representation as in enumeration of all subsets:

- Required: Fixed universe U of possible elements
- \triangleright Represent sets as bitstrings of length |U|
- Associate every bit with one object from the universe
- ▶ Each bit is 1 iff the corresponding object is in the set

Example:

- $U = \{o_0, \ldots, o_0\}$
- Associate the i-th bit (0-indexed, from left to right) with oi
- \triangleright { o_2 , o_4 , o_5 , o_9 } is represented as: 0010110001

How can the set operations be implemented?