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Countable Sets



Comparing Cardinality

Two sets A and B have the same cardinality
if their elements can be paired
(i.e. there is a bijection from A to B).

Set A has a strictly smaller cardinality than set B if

we can map distinct elements of A to distinct elements of B
(i.e. there is an injective function from A to B), and
|A| ≠ |B|.

This clearly makes sense for finite sets.

What about infinite sets?
Do they even have different cardinalities?
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Countable and Countably Infinite Sets

Definition (countably infinite and countable)

A set A is countably infinite if |A| = |N0|.

A set A is countable if |A| ≤ |N0|.

A set is countable if it is finite or countably infinite.

We can count the elements of a countable set one at a time.

The objects are “discrete” (in contrast to “continuous”).

Discrete mathematics deals with all kinds of countable sets.
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Set of Even Numbers

even = {n | n ∈ N0 and n is even}
Obviously: even ⊂ N0

Intuitively, there are twice as many natural numbers
as even numbers — no?

Is |even| < |N0|?



Set of Even Numbers

Theorem (set of even numbers is countably infinite)

The set of all even natural numbers is countably infinite,
i. e. |{n | n ∈ N0 and n is even}| = |N0|.

Proof Sketch.

We can pair every even number 2n with natural number n.
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Set of Perfect Squares

Theorem (set of perfect squares is countably infinite)

The set of all perfect squares is countably infinite,
i. e. |{n2 | n ∈ N0}| = |N0|.

Proof Sketch.

We can pair every square number n2 with natural number n.
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Subsets of Countable Sets are Countable

In general:

Theorem (subsets of countable sets are countable)

Let A be a countable set. Every set B with B ⊆ A is countable.

Proof.

Since A is countable there is an injective function f from A to N0.
The restriction of f to B is an injective function from B to N0.
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Set of the Positive Rationals

Theorem (set of positive rationals is countably infinite)

Set Q+ = {n | n ∈ Q and n > 0} = {p/q | p, q ∈ N1}
is countably infinite.

Proof idea.
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Union of Two Countable Sets is Countable

Theorem (union of two countable sets countable)

Let A and B be countable sets. Then A ∪ B is countable.

Proof sketch.

As A and B are countable there is an injective function fA from A
to N0, analogously fB from B to N0.

We define function fA∪B from A ∪ B to N0 as

fA∪B(e) =

{
2fA(e) if e ∈ A

2fB(e) + 1 otherwise

This fA∪B is an injective function from A ∪ B to N0.



Integers and Rationals

Theorem (sets of integers and rationals are countably infinite)

The sets Z and Q are countably infinite.

Without proof (⇝ exercises)



Union of More than Two Sets

Definition (arbitrary unions)

Let M be a set of sets. The union
⋃

S∈M S is the set with

x ∈
⋃
S∈M

S iff exists S ∈ M with x ∈ S .



Countable Union of Countable Sets

Theorem

Let M be a countable set of countable sets.

Then
⋃

S∈M S is countable.

Proof sketch.

With M = {S1,S2, S3, . . . } (possibly finite) and each
Si = {xi1, xi2, . . . } (possibly finite), we can use an analogous idea
as for the countability of Q+ (skipping duplicates):

S1 : x11 → x12 x13 → x14 x15 →
↙ ↗ ↙ ↗

S2 : x21 x22 x23 x24 x25 · · ·
↓ ↗ ↙ ↗

S3 : x31 x32 x33 x34 x35 · · ·
↙ ↗

S4 : x41 x42 x43 x44 x45 · · ·
↓ ↗

S5 : x51 x52 x53 x54 x55 · · ·
...

...
...

...
...



Set of all Binary Trees is Countable

Theorem (set of all binary trees is countable)

The set B = {b | b is a binary tree} is countable.

Proof.

For n ∈ N0 the set Bn of all binary trees with n leaves is finite.

With M = {Bi | i ∈ N0} the set of all binary trees is
B =

⋃
B′∈M B ′.

Since M is a countable set of countable sets, B is countable.



And Now?

We have seen several countably infinite sets.

What about our original questions?

Do all infinite sets have the same cardinality?

Are they all countably infinite?
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Summary

A set is countable if it has at most cardinality |N0|.
If a set is countable and infinite, it is countably infinite.

Sets Z and Q are countably infinite.

Every subset of a countable set is countable.

Every countable union of countable sets is countable, in
particular, the union of two countable sets is countable.
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