# Discrete Mathematics in Computer Science B7. Sets: Countability

Malte Helmert, Gabriele Röger

University of Basel

October 28, 2024

# Countable Sets

# Comparing Cardinality

- Two sets A and B have the same cardinality if their elements can be paired (i.e. there is a bijection from A to B).
- Set A has a strictly smaller cardinality than set B if
  - we can map distinct elements of A to distinct elements of B
     (i.e. there is an injective function from A to B), and
  - $|A| \neq |B|.$

# Comparing Cardinality

- Two sets A and B have the same cardinality if their elements can be paired (i.e. there is a bijection from A to B).
- Set A has a strictly smaller cardinality than set B if
  - we can map distinct elements of A to distinct elements of B
     (i.e. there is an injective function from A to B), and
  - $|A| \neq |B|$ .
- This clearly makes sense for finite sets.

# Comparing Cardinality

- Two sets A and B have the same cardinality if their elements can be paired (i.e. there is a bijection from A to B).
- Set A has a strictly smaller cardinality than set B if
  - we can map distinct elements of A to distinct elements of B
     (i.e. there is an injective function from A to B), and
  - $|A| \neq |B|$ .
- This clearly makes sense for finite sets.
- What about infinite sets? Do they even have different cardinalities?

# Countable and Countably Infinite Sets

#### Definition (countably infinite and countable)

A set A is countably infinite if  $|A| = |\mathbb{N}_0|$ .

A set A is countable if  $|A| \leq |\mathbb{N}_0|$ .

A set is countable if it is finite or countably infinite.

# Countable and Countably Infinite Sets

#### Definition (countably infinite and countable)

A set *A* is countably infinite if  $|A| = |\mathbb{N}_0|$ .

A set A is countable if  $|A| \leq |\mathbb{N}_0|$ .

A set is countable if it is finite or countably infinite.

- We can count the elements of a countable set one at a time.
- The objects are "discrete" (in contrast to "continuous").
- Discrete mathematics deals with all kinds of countable sets.

#### Set of Even Numbers

- $even = \{n \mid n \in \mathbb{N}_0 \text{ and } n \text{ is even}\}$
- Obviously:  $even \subset \mathbb{N}_0$
- Intuitively, there are twice as many natural numbers as even numbers — no?
- Is  $|even| < |\mathbb{N}_0|$ ?

#### Set of Even Numbers

#### Theorem (set of even numbers is countably infinite)

The set of all even natural numbers is countably infinite, i. e.  $|\{n \mid n \in \mathbb{N}_0 \text{ and } n \text{ is even}\}| = |\mathbb{N}_0|$ .

#### Set of Even Numbers

#### Theorem (set of even numbers is countably infinite)

The set of all even natural numbers is countably infinite, i. e.  $|\{n \mid n \in \mathbb{N}_0 \text{ and } n \text{ is even}\}| = |\mathbb{N}_0|$ .

#### Proof Sketch.

We can pair every even number 2n with natural number n.

# Set of Perfect Squares

#### Theorem (set of perfect squares is countably infinite)

The set of all perfect squares is countably infinite,

i. e.  $|\{n^2 \mid n \in \mathbb{N}_0\}| = |\mathbb{N}_0|$ .

# Set of Perfect Squares

#### Theorem (set of perfect squares is countably infinite)

The set of all perfect squares is countably infinite,

i. e. 
$$|\{n^2 \mid n \in \mathbb{N}_0\}| = |\mathbb{N}_0|$$
.

#### Proof Sketch.

We can pair every square number  $n^2$  with natural number n.

#### Subsets of Countable Sets are Countable

In general:

Theorem (subsets of countable sets are countable)

Let A be a countable set. Every set B with  $B \subseteq A$  is countable.

#### Subsets of Countable Sets are Countable

In general:

#### Theorem (subsets of countable sets are countable)

Let A be a countable set. Every set B with  $B \subseteq A$  is countable.

#### Proof.

Since A is countable there is an injective function f from A to  $\mathbb{N}_0$ .

The restriction of f to B is an injective function from B to  $\mathbb{N}_0$ .

#### Set of the Positive Rationals

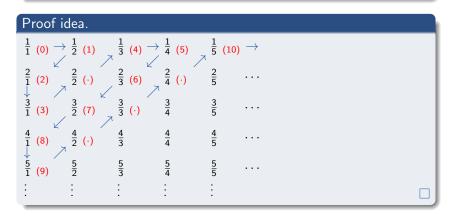
#### Theorem (set of positive rationals is countably infinite)

Set  $\mathbb{Q}_+ = \{n \mid n \in \mathbb{Q} \text{ and } n > 0\} = \{p/q \mid p, q \in \mathbb{N}_1\}$  is countably infinite.

#### Set of the Positive Rationals

#### Theorem (set of positive rationals is countably infinite)

Set  $\mathbb{Q}_+ = \{n \mid n \in \mathbb{Q} \text{ and } n > 0\} = \{p/q \mid p, q \in \mathbb{N}_1\}$  is countably infinite.



#### Union of Two Countable Sets is Countable

#### Theorem (union of two countable sets countable)

Let A and B be countable sets. Then  $A \cup B$  is countable.

#### Proof sketch.

As A and B are countable there is an injective function  $f_A$  from A to  $\mathbb{N}_0$ , analogously  $f_B$  from B to  $\mathbb{N}_0$ .

We define function  $f_{A \cup B}$  from  $A \cup B$  to  $\mathbb{N}_0$  as

$$f_{A\cup B}(e) = egin{cases} 2f_A(e) & ext{if } e\in A \ 2f_B(e)+1 & ext{otherwise} \end{cases}$$

This  $f_{A \cup B}$  is an injective function from  $A \cup B$  to  $\mathbb{N}_0$ .

# Integers and Rationals

Theorem (sets of integers and rationals are countably infinite)

The sets  $\mathbb{Z}$  and  $\mathbb{Q}$  are countably infinite.

Without proof (→ exercises)

#### Union of More than Two Sets

#### Definition (arbitrary unions)

Let M be a set of sets. The union  $\bigcup_{S \in M} S$  is the set with

$$x \in \bigcup_{S \in M} S$$
 iff exists  $S \in M$  with  $x \in S$ .

#### Countable Union of Countable Sets

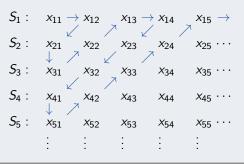
#### Theorem

Let M be a countable set of countable sets.

Then  $\bigcup_{S \in M} S$  is countable.

#### Proof sketch.

With  $M = \{S_1, S_2, S_3, ...\}$  (possibly finite) and each  $S_i = \{x_{i1}, x_{i2}, ...\}$  (possibly finite), we can use an analogous idea as for the countability of  $\mathbb{Q}_+$  (skipping duplicates):



# Set of all Binary Trees is Countable

#### Theorem (set of all binary trees is countable)

The set  $B = \{b \mid b \text{ is a binary tree}\}$  is countable.

#### Proof.

For  $n \in \mathbb{N}_0$  the set  $B_n$  of all binary trees with n leaves is finite.

With  $M = \{B_i \mid i \in \mathbb{N}_0\}$  the set of all binary trees is  $B = \bigcup_{B' \in M} B'$ .

Since M is a countable set of countable sets, B is countable.

And Now?

We have seen several countably infinite sets.

And Now?

We have seen several countably infinite sets.

What about our original questions?

- Do all infinite sets have the same cardinality?
- Are they all countably infinite?

# Questions



Questions?

# Summary

### Summary

- A set is countable if it has at most cardinality  $|\mathbb{N}_0|$ .
- If a set is countable and infinite, it is countably infinite.
- $\blacksquare$  Sets  $\mathbb Z$  and  $\mathbb Q$  are countably infinite.

# Summary

- A set is countable if it has at most cardinality  $|\mathbb{N}_0|$ .
- If a set is countable and infinite, it is countably infinite.
- Sets  $\mathbb{Z}$  and  $\mathbb{Q}$  are countably infinite.
- Every subset of a countable set is countable.
- Every countable union of countable sets is countable, in particular, the union of two countable sets is countable.