

Discrete Mathematics in Computer Science October 28, 2024 — B7. Sets: Countability B7.1 Countable Sets

Countable and Countably Infinite Sets

Definition (countably infinite and countable) A set A is countably infinite if $|A| = |\mathbb{N}_0|$.

A set A is countable if $|A| \leq |\mathbb{N}_0|$.

A set is countable if it is finite or countably infinite.

- We can count the elements of a countable set one at a time.
- ▶ The objects are "discrete" (in contrast to "continuous").
- Discrete mathematics deals with all kinds of countable sets.

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

October 28, 2024 5 / 17

Countable Sets

Countable Sets

B7. Sets: Countability Set of Even Numbers

> Theorem (set of even numbers is countably infinite) The set of all even natural numbers is countably infinite, *i.* e. $|\{n \mid n \in \mathbb{N}_0 \text{ and } n \text{ is even}\}| = |\mathbb{N}_0|.$

Proof Sketch.

We can pair every even number 2n with natural number n.

We can pair every square number n^2 with natural number n.

Countable Sets

Subsets of Countable Sets are Countable

In general:

Theorem (subsets of countable sets are countable) Let A be a countable set. Every set B with $B \subseteq A$ is countable.

Proof.

Since A is countable there is an injective function f from A to \mathbb{N}_0 . The restriction of f to B is an injective function from B to \mathbb{N}_0 .

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

B7. Sets: Countability Union of Two Countable Sets is Countable

Theorem (union of two countable sets countable) Let A and B be countable sets. Then $A \cup B$ is countable.

Proof sketch.

As A and B are countable there is an injective function f_A from A to \mathbb{N}_0 , analogously f_B from B to \mathbb{N}_0 .

We define function $f_{A\cup B}$ from $A\cup B$ to \mathbb{N}_0 as

$$f_{\mathcal{A}\cup \mathcal{B}}(e) = egin{cases} 2f_{\mathcal{A}}(e) & ext{if } e\in \mathcal{A} \ 2f_{\mathcal{B}}(e)+1 & ext{otherwise} \end{cases}$$

This $f_{A\cup B}$ is an injective function from $A\cup B$ to \mathbb{N}_0 .

October 28, 2024

9 / 17

Countable Sets

Countable Sets

Set of the Positive Rationals

B7. Sets: Countability

Proof idea.

Theorem (set of positive rationals is countably infinite) Set $\mathbb{Q}_+ = \{n \mid n \in \mathbb{Q} \text{ and } n > 0\} = \{p/q \mid p, q \in \mathbb{N}_1\}$ is countably infinite.

Theorem (set of all binary trees is countable) The set $B = \{b \mid b \text{ is a binary tree}\}$ is countable.

Proof.

For $n \in \mathbb{N}_0$ the set B_n of all binary trees with n leaves is finite. With $M = \{B_i \mid i \in \mathbb{N}_0\}$ the set of all binary trees is $B = \bigcup_{B' \in M} B'$.

Since M is a countable set of countable sets, B is countable.

Countable Union of Countable Sets

Theorem

Let M be a countable set of countable sets.

Then $\bigcup_{S \in M} S$ is countable.

Proof sketch.

With $M = \{S_1, S_2, S_3, ...\}$ (possibly finite) and each $S_i = \{x_{i1}, x_{i2}, ...\}$ (possibly finite), we can use an analogous idea as for the countability of \mathbb{Q}_+ (skipping duplicates):

Countable Sets

