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Comparing Cardinality



Finite Sets Revisited

We already know:

The cardinality |S | measures the size of set S .

A set is finite if it has a finite number of elements.

The cardinality of a finite set
is the number of elements it contains.

A set is infinite if it has an infinite number of elements.

Do all infinite sets have the same cardinality?
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Comparing the Cardinality of Sets

Consider A = {1, 2} and B = {dog, cat,mouse}.
We can map distinct elements of A to distinct elements of B,
e.g.

1 7→ dog

2 7→ cat

This is an injective function from A to B:

every element of A is mapped to an element of B;
different elements of A are mapped to different elements of B.
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Definition (cardinality not larger)

Set A has cardinality less than or equal to the cardinality of set B
(|A| ≤ |B|), if there is an injective function from A to B.
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Equinumerous Sets

We use the existence of a bijection also as criterion for infinite sets:

Definition (equinumerous sets)

Two sets A and B have the same cardinality (|A| = |B|)
if there exists a bijection from A to B.

Such sets are called equinumerous.

Definition (strictly smaller cardinality)

Set A has cardinality strictly less than the cardinality of set B
(|A| < |B|), if |A| ≤ |B| and |A| ≠ |B|.

Consider set A and object e /∈ A. Is |A| < |A ∪ {e}|?
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Hilbert’s Hotel



Hilbert’s Hotel

Our intuition for finite sets does not always work for infinite sets.

If in a hotel all rooms are occupied
then it cannot accomodate
additional guests.

But Hilbert’s Grand Hotel has
infinitely many rooms.

All these rooms are occupied.
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One More Guest Arrives

Every guest moves from her current room n to room n + 1.

Room 1 is then free.

The new guest gets room 1.



Four More Guests Arrive

Every guest moves from her current room n to room n + 4.

Rooms 1 to 4 are no longer occupied and
can be used for the new guests.

→ Works for any finite number of additional guests.
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An Infinite Number of Guests Arrives

Every guest moves from her current room n to room 2n.

The infinitely many rooms with odd numbers are now
available.

The new guests fit into these rooms.
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Can we Go further?

What if . . .

infinitely many coaches, each with an infinite number of guests

infinitely many ferries, each with an infinite number of
coaches, each with infinitely many guests

. . .

. . . arrive?

There are strategies for all these situations
as long as with “infinite” we mean “countably infinite”

and there is a finite number of layers.
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Set A has cardinality less than or equal the cardinality of set
B (|A| ≤ |B|), if there is an injective function from A to B.

Sets A and B have the same cardinality (|A| = |B|) if there
exists a bijection from A to B.

Our intuition for finite sets does not always work
for infinite sets.
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