
Discrete Mathematics in Computer Science
B5. Functions

Malte Helmert, Gabriele Röger
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Partial and Total Functions



Important Building Blocks of Discrete Mathematics

Important building blocks:

sets

relations

functions

In principle, functions are just a special kind of relations:

f : N0 → N0 with f (x) = x2

relation R over N0 with R = {(x , x2) | x ∈ N0}.
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Functional Relations

Definition

A binary relation R over sets A and B is functional
if for every a ∈ A there is at most one b ∈ B with (a, b) ∈ R.
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Functions – Examples

f : N0 → N0 with f (x) = x2 + 1

abs : Z → N0 with

abs(x) =

{
x if x ≥ 0

−x otherwise

distance : R2 × R2 → R with
distance((x1, y1), (x2, y2)) =

√
(x2 − x1)2 + (y2 − y1)2
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Partial Function – Example

Partial function r : Z× Z ↛ Q with

r(n, d) =

{
n
d if d ̸= 0

undefined otherwise



Partial Functions

Definition (Partial function)

A partial function f from set A to set B (written f : A ↛ B)
is given by a functional relation G over A and B.

Relation G is called the graph of f .

We write f (x) = y for (x , y) ∈ G and say
y is the image of x under f .

If there is no y ∈ B with (x , y) ∈ G , then f (x) is undefined.

Partial function r : Z× Z ↛ Q with

r(n, d) =

{
n
d if d ̸= 0

undefined otherwise

has graph {((n, d), n
d ) | n ∈ Z, d ∈ Z \ {0}} ⊆ Z2 ×Q.
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Domain (of Definition), Codomain, Image

Definition (Domain of definition, codomain, image)

Let f : A ↛ B be a partial function.

Set A is called the domain of f , set B is its codomain.

The domain of definition of f is the set
dom(f ) = {x ∈ A | there is a y ∈ B with f (x) = y}.
The image (or range) of f is the set
img(f ) = {y | there is an x ∈ A with f (x) = y}.
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f : {a, b, c , d , e} ↛ {1, 2, 3, 4}
f (a) = 4, f (b) = 2, f (c) = 1, f (e) = 4
domain {a, b, c , d , e}
codomain {1, 2, 3, 4}
domain of definition dom(f ) = {a, b, c, e}
image img(f ) = {1, 2, 4}



Domain (of Definition), Codomain, Image

Definition (Domain of definition, codomain, image)

Let f : A ↛ B be a partial function.

Set A is called the domain of f , set B is its codomain.

The domain of definition of f is the set
dom(f ) = {x ∈ A | there is a y ∈ B with f (x) = y}.
The image (or range) of f is the set
img(f ) = {y | there is an x ∈ A with f (x) = y}.

a

b

c

d

e

1

2

3

4

A

B

f : {a, b, c , d , e} ↛ {1, 2, 3, 4}
f (a) = 4, f (b) = 2, f (c) = 1, f (e) = 4
domain {a, b, c , d , e}
codomain {1, 2, 3, 4}

domain of definition dom(f ) = {a, b, c, e}
image img(f ) = {1, 2, 4}



Domain (of Definition), Codomain, Image

Definition (Domain of definition, codomain, image)

Let f : A ↛ B be a partial function.

Set A is called the domain of f , set B is its codomain.

The domain of definition of f is the set
dom(f ) = {x ∈ A | there is a y ∈ B with f (x) = y}.

The image (or range) of f is the set
img(f ) = {y | there is an x ∈ A with f (x) = y}.

a

b

c

d

e

1

2

3

4

A

B

f : {a, b, c , d , e} ↛ {1, 2, 3, 4}
f (a) = 4, f (b) = 2, f (c) = 1, f (e) = 4
domain {a, b, c , d , e}
codomain {1, 2, 3, 4}
domain of definition dom(f ) = {a, b, c, e}

image img(f ) = {1, 2, 4}



Domain (of Definition), Codomain, Image

Definition (Domain of definition, codomain, image)

Let f : A ↛ B be a partial function.

Set A is called the domain of f , set B is its codomain.

The domain of definition of f is the set
dom(f ) = {x ∈ A | there is a y ∈ B with f (x) = y}.
The image (or range) of f is the set
img(f ) = {y | there is an x ∈ A with f (x) = y}.

a

b

c

d

e

1

2

3

4

A

B

f : {a, b, c , d , e} ↛ {1, 2, 3, 4}
f (a) = 4, f (b) = 2, f (c) = 1, f (e) = 4
domain {a, b, c , d , e}
codomain {1, 2, 3, 4}
domain of definition dom(f ) = {a, b, c, e}
image img(f ) = {1, 2, 4}



Preimage

The preimage contains all elements of the domain that are mapped
to given elements of the codomain.

Definition (Preimage)

Let f : A ↛ B be a partial function and let Y ⊆ B.

The preimage of Y under f is the set
f −1[Y ] = {x ∈ A | f (x) ∈ Y }.
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f −1[{1}] =

f −1[{3}] =

f −1[{4}] =

f −1[{1, 2}] =
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Total Functions

Definition (Total function)

A (total) function f : A → B from set A to set B is a partial
function from A to B such that f (x) is defined for all x ∈ A.

→ no difference between the domain and the domain of definition
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Specifying a Function

Some common ways of specifying a function:

Listing the mapping explicitly, e. g.
f (a) = 4, f (b) = 2, f (c) = 1, f (e) = 4 or
f = {a 7→ 4, b 7→ 2, c 7→ 1, e 7→ 4}
By a formula, e. g. f (x) = x2 + 1

By recurrence, e. g.
0! = 1 and
n! = n(n − 1)! for n > 0

In terms of other functions, e. g. inverse, composition
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Relationship to Functions in Programming

def factorial(n):

if n == 0:

return 1

else:

return n * factorial(n-1)

→ Relationship between recursion and recurrence



Relationship to Functions in Programming

def foo(n):

value = ...

while <some condition>:

...

value = ...

return value

→ Does possibly not terminate on all inputs.
→ Value is undefined for such inputs.
→ Theoretical computer science: partial function



Relationship to Functions in Programming

import random

counter = 0

def bar(n):

print("Hi! I got input", n)

global counter

counter += 1

return random.choice([1,2,n])

→ Functions in programming don’t always compute
mathematical functions (except purely functional languages).

→ In addition, not all mathematical functions are computable.



Questions

Questions?



Operations on Partial Functions



Restrictions and Extensions

Definition (Restriction and extension)

Let f : A ↛ B be a partial function and let X ⊆ A.
The restriction of f to X is the partial function f |X : X ↛ B
with f |X (x) = f (x) for all x ∈ X .

A function f ′ : A′ ↛ B is called an extension of f
if A ⊆ A′ and f ′|A = f .

The restriction of f to its domain of definition is a total function.

What’s the graph of the restriction?

What’s the restriction of f to its domain?
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Function Composition

Definition (Composition of partial functions)

Let f : A ↛ B and g : B ↛ C be partial functions.

The composition of f and g is g ◦ f : A ↛ C with

(g ◦ f )(x) =


g(f (x)) if f is defined for x and

g is defined for f (x)

undefined otherwise

Corresponds to relation composition of the graphs.

If f and g are functions, their composition is a function.

Example:

f : N0 → N0 with f (x) = x2

g : N0 → N0 with g(x) = x + 3

(g ◦ f )(x) =
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Properties of Function Composition

Function composition is

not commutative:

f : N0 → N0 with f (x) = x2

g : N0 → N0 with g(x) = x + 3
(g ◦ f )(x) = x2 + 3
(f ◦ g)(x) = (x + 3)2

associative, i. e. h ◦ (g ◦ f ) = (h ◦ g) ◦ f
→ analogous to associativity of relation composition
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Function Composition in Programming

We implicitly compose functions all the time. . .

def foo(n):

...

x = somefunction(n)

y = someotherfunction(x)

...

Many languages also allow explicit composition of functions,
e. g. in Haskell:

incr x = x + 1

square x = x * x

squareplusone = incr . square



Function Composition in Programming

We implicitly compose functions all the time. . .

def foo(n):

...

x = somefunction(n)

y = someotherfunction(x)

...

Many languages also allow explicit composition of functions,
e. g. in Haskell:

incr x = x + 1

square x = x * x

squareplusone = incr . square



Questions

Questions?



Properties of Functions



Properties of Functions

a

b

c

d

1

2

3

4

5

A

B

Partial functions map every element of their domain
to at most one element of their codomain,
total functions map it to exactly one such value.

Different elements of the domain can have the same image.

There can be values of the codomain
that aren’t the image of any element of the domain.

We often want to exclude such cases
→ define additional properties to say this quickly
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Injective Functions

An injective function maps distinct elements of its domain to
distinct elements of its co-domain.

Definition (Injective function)

A function f : A → B is injective (also one-to-one or an injection)
if for all x , y ∈ A with x ̸= y it holds that f (x) ̸= f (y).
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Injective Functions – Examples

Which of these functions are injective?

f : Z → N0 with f (x) = |x |
g : N0 → N0 with g(x) = x2

h : N0 → N0 with h(x) =

{
x − 1 if x is odd

x + 1 if x is even



Composition of Injective Functions

Theorem

If f : A → B and g : B → C are injective functions
then also g ◦ f is injective.

Proof.

Consider arbitrary elements x , y ∈ A with x ̸= y .
Since f is injective, we know that f (x) ̸= f (y).
As g is injective, this implies that g(f (x)) ̸= g(f (y)).
With the definition of g ◦ f , we conclude that
(g ◦ f )(x) ̸= (g ◦ f )(y).
Overall, this shows that g ◦ f is injective.
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Surjective Functions

A surjective function maps at least one elements to every element
of its co-domain.

Definition (Surjective function)

A function f : A → B is surjective (also onto or a surjection)
if its image is equal to its codomain,
i. e. for all y ∈ B there is an x ∈ A with f (x) = y .
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Surjective Functions – Examples

Which of these functions are surjective?

f : Z → N0 with f (x) = |x |
g : N0 → N0 with g(x) = x2

h : N0 → N0 with h(x) =

{
x − 1 if x is odd

x + 1 if x is even



Composition of Surjective Functions

Theorem

If f : A → B and g : B → C are surjective functions
then also g ◦ f is surjective.

Proof.

Consider an arbitary element z ∈ C .
Since g is surjective, there is a y ∈ B with g(y) = z .
As f is surjective, for such a y there is an x ∈ A with f (x) = y
and thus g(f (x)) = z .
Overall, for every z ∈ C there is an x ∈ A with
(g ◦ f )(x) = g(f (x)) = z , so g ◦ f is surjective.
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Bijective Functions

A bijective function pairs every element of its domain with exactly
one element of its codomain and every element of the codomain is
paired with exactly one element of the domain.

Definition (Bijective function)

A function is bijective (also a one-to-one correspondence or a
bijection) if it is injective and surjective.
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A B

Corollary

The composition of two bijective
functions is bijective.
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Bijective Functions – Examples

Which of these functions are bijective?

f : Z → N0 with f (x) = |x |
g : N0 → N0 with g(x) = x2

h : N0 → N0 with h(x) =

{
x − 1 if x is odd

x + 1 if x is even



Inverse Function

Definition

Let f : A → B be a bijection.
The inverse function of f is the function f −1 : B → A with
f −1(y) = x iff f (x) = y .
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Inverse Function

Definition

Let f : A → B be a bijection.
The inverse function of f is the function f −1 : B → A with
f −1(y) = x iff f (x) = y .
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Inverse Function and Composition

Theorem

Let f : A → B be a bijection.

1 For all x ∈ A it holds that f −1(f (x)) = x .

2 For all y ∈ B it holds that f (f −1(y)) = y .

3 f −1 is a bijection from B to A.

4 (f −1)−1 = f

Proof sketch.

1 For x ∈ A let y = f (x). Then f −1(f (x)) = f −1(y) = x

2 For y ∈ B there is exactly one x with y = f (x). With this x
it holds that f −1(y) = x and overall f (f −1(y)) = f (x) = y .

3 Surjective: for all x ∈ A, f −1 maps f (x) to x (cf. (1)).
Injective: if f −1(y) = f −1(y ′) then f (f −1(y)) = f (f −1(y ′)),
so with (2) we have y = y ′.

4 Def. of inverse: (f −1)−1(x) = y iff f −1(y) = x iff f (x) = y .
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Inverse Function

Theorem

Let f : A → B and g : B → C be bijections.

Then (g ◦ f )−1 = f −1 ◦ g−1.

Proof.

We need to show that for all x ∈ C it holds that
(g ◦ f )−1(x) = (f −1 ◦ g−1)(x).

Consider an arbitrary x ∈ C and let y = (g ◦ f )−1(x).
By the definition of the inverse (g ◦ f )(y) = g(f (y)) = x .

Let z = f (y).
From x = g(f (y)), we know that x = g(z) and thus g−1(x) = z .
From z = f (y) we get f −1(z) = y .

This gives (f −1 ◦ g−1)(x) = f −1(g−1(x)) = f −1(z) = y .
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Permutations



Permutation – Definition

Definition (Permutation)

Let S be a set. A bijection π : S → S is called a permutation of S .

How many permutations are there for a finite set S?

Permutations of the same set S can be composed with function
composition. The result is again a permutation of S . Why?

The inverse of a permutation is again a permutation.
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Permutation – Definition

Definition (Permutation)

Let S be a set. A bijection π : S → S is called a permutation of S .

How many permutations are there for a finite set S?

Permutations of the same set S can be composed with function
composition. The result is again a permutation of S . Why?

The inverse of a permutation is again a permutation.



Permutations as Functions on Positions

A permutation can be used to describe the rearrangement of
objects.

Consider for example sequence o2, o1, o3, o4
Let’s rearrange the objects, e. g. to o3, o1, o4, o2.

The object at position 1 was moved to position 4,
the one from position 3 to position 1,
the one from position 4 to position 3 and
the one at position 2 stayed where it was.

This corresponds to the permutation
σ : {1, 2, 3, 4} → {1, 2, 3, 4} with
σ(1) = 4, σ(2) = 2, σ(3) = 1, σ(4) = 3
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Permutation: Example I

Determine the arrangement of some objects after applying a
permutation that operates on the locations.

and π permutation of {1, 2, 3}.

Define f with f ( ) = 1, f ( ) = 2, f ( ) = 3
to describe the initial configuration.

Then π ◦ f describes the resulting configuration.
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Permutation: Example II

Describe what fruit is moved to the place of what fruit,
independent of the positions.

Swap the and the with permutation f of { , , } with

f ( ) = , f ( ) = , f ( ) = .

If g maps locations to fruits then f −1 ◦ g describes the mapping
from locations to fruits after the swap.

For example g(1) = , g(2) = , g(3) = for .

Then (f −1 ◦ g)(1) = , (f −1 ◦ g)(2) = , (f −1 ◦ g)(3) =

representing .
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Permutation: Example III

Determine the permutation of locations that leads from one
configuration to the other.

⇒ .

Define f with f ( ) = 1, f ( ) = 2, f ( ) = 3
to describe the initial configuration and

function g with g( ) = 2, g( ) = 1, g( ) = 3
for the final configuration.

Then g ◦ f −1 describes the permutation of locations.
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Summary

injective function: maps distinct elements of its domain to
distinct elements of its co-domain.

surjective function: maps at least one element to every
element of its co-domain.

bijective function: injective and surjective
→ one-to-one correspondence

Bijective functions are invertible. The inverse function of f
maps the image of x under f to x .

Permutations are bijections from a set to itself. They can be
used to describe rearrangements of objects.
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