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Operations on Relations



Relations: Recap

A relation over sets S1, . . . ,Sn is a set R ⊆ S1 × · · · × Sn.

A binary relation is a relation over two sets.

A homogeneous relation R over set S is a binary relation
R ⊆ S × S .
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Set Operations

Relations are sets of tuples, so we can build their union,
intersection, complement, . . . .

Let R be a relation over S1, . . . ,Sn and R ′ a relation over
S ′
1, . . . ,S

′
n. Then R ∪R ′ is a relation over S1 ∪S ′

1, . . . ,Sn ∪S ′
n.

With the standard relations <,= and ≤ for N0,
relation ≤ corresponds to the union of relations < and =.

Let R and R ′ be relations over n sets.
Then R ∩ R ′ is a relation.
Over which sets?

With the standard relations ≤,= and ≥ for N0,
relation = corresponds to the intersection of ≤ and ≥.

If R is a relation over S1, . . . ,Sn
then so is the complementary relation R̄ = (S1 × · · · × Sn) \R.

With the standard relations for N0, relation = is the
complementary relation of ̸= and > the one of ≤.
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Inverse of a Relation

Definition

Let R ⊆ A× B be a binary relation over A and B.

The inverse relation of R is the relation R−1 ⊆ B × A given by
R−1 = {(b, a) | (a, b) ∈ R}.

The inverse of the < relation over N0 is the > relation.

Relation R with xRy iff person x has a key for y .
Inverse: Q with aQb iff lock a can be openened by person b.

German: inverse Relation oder Umkehrrelation
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Composition of Relations

Definition (Composition of relations)

Let R1 be a relation over A and B and R2 a relation over B and C .

The composition of R1 and R2 is the relation R2 ◦R1 over A and C
with:

R2 ◦ R1 = {(a, c) | there is a b ∈ B with

(a, b) ∈ R1 and (b, c) ∈ R2}

How can we illustrate this graphically?

German: Komposition oder Rückwärtsverkettung
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Composition of Relations: Example

S1 = {1, 2, 3, 4}
S2 = {A,B,C ,D,E}
S3 = {a, b, c, d}

R1 = {(1,A), (1,B), (3,B), (4,D)} over S1 and S2

R2 = {(B, a), (C , c), (D, a), (D, d)} over S2 and S3

R2 ◦ R1 =



Composition is Associative

Theorem (Associativity of composition)

Let S1, . . . ,S4 be sets and R1,R2,R3 relations with Ri ⊆ Si × Si+1.
Then

R3 ◦ (R2 ◦ R1) = (R3 ◦ R2) ◦ R1.

Proof.

It holds that (x1, x4) ∈ R3 ◦ (R2 ◦ R1) iff there is an x3 with
(x1, x3) ∈ R2 ◦ R1 and (x3, x4) ∈ R3.

As (x1, x3) ∈ R2 ◦ R1 iff there is an x2 with (x1, x2) ∈ R1 and
(x2, x3) ∈ R2, we have overall that (x1, x4) ∈ R3 ◦ (R2 ◦ R1) iff
there are x2, x3 with (x1, x2) ∈ R1, (x2, x3) ∈ R2 and (x3, x4) ∈ R3.

This is the case iff there is an x2 with (x1, x2) ∈ R1 and
(x2, x4) ∈ R3 ◦ R2, which holds iff (x1, x4) ∈ (R3 ◦ R2) ◦ R1.
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Questions

Questions?



(Reflexive) Transitive Closure

Definition ((Reflexive) transitive closure)

Let R be a relation over set S .

The transitive closure R+ of R is the smallest relation over S
that is transitive and has R as a subset.

The reflexive transitive closure R∗ of R is the smallest relation over
S that is reflexive, transitive and has R as a subset.

The (reflexive) transitive closure always exists. Why?

Example: If aRb specifies that there is a direct flight from a to b,
what do R+ and R∗ express?

German: (reflexive) transitive Hülle
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Transitive Closure and n-fold Composition

Define the n-fold composition of a relation R over S as

R0 = {(x , x) | x ∈ S} and

Ri = R ◦ Ri−1 for i > 1.

Theorem

Let R be a relation over set S.
Then R+ =

⋃∞
i=1 Ri and R∗ =

⋃∞
i=0 Ri .

Without proof.

German: n-fache Komposition
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Other Operators

There are many more operators, also for general relations.

Highly relevant for queries over relational databases.

For example, join operators combine relations based on
common entries.

Example for a natural join:
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Summary

Relations: general, binary, homogeneous

Properties: reflexivity, symmetry, transitivity
(and related properties)

Special relations: equivalence relations, order relations

Operations: inverse, composition, transitive closure
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