Discrete Mathematics in Computer Science **B4.** Operations on Relations

Malte Helmert, Gabriele Röger

University of Basel

October 14, 2024

Discrete Mathematics in Computer Science

October 14, 2024 — B4. Operations on Relations

B4.1 Operations on Relations

B4.1 Operations on Relations

Relations: Recap

- ▶ A relation over sets $S_1, ..., S_n$ is a set $R \subseteq S_1 \times \cdots \times S_n$.
- A binary relation is a relation over two sets.
- ▶ A homogeneous relation R over set S is a binary relation $R \subseteq S \times S$.

Set Operations

- Relations are sets of tuples, so we can build their union, intersection, complement,
- Let R be a relation over S_1, \ldots, S_n and R' a relation over S'_1, \ldots, S'_n . Then $R \cup R'$ is a relation over $S_1 \cup S'_1, \ldots, S_n \cup S'_n$. With the standard relations <, = and \le for \mathbb{N}_0 , relation \le corresponds to the union of relations < and =.
- Then $R \cap R'$ is a relation. Over which sets? With the standard relations \leq , = and \geq for \mathbb{N}_0 , relation = corresponds to the intersection of \leq and \geq .

Let R and R' be relations over n sets.

▶ If R is a relation over S_1, \ldots, S_n then so is the complementary relation $\bar{R} = (S_1 \times \cdots \times S_n) \setminus R$. With the standard relations for \mathbb{N}_0 , relation = is the complementary relation of \neq and > the one of \leq .

Inverse of a Relation

Definition

Let $R \subseteq A \times B$ be a binary relation over A and B.

The inverse relation of R is the relation $R^{-1} \subseteq B \times A$ given by $R^{-1} = \{(b, a) \mid (a, b) \in R\}.$

- ▶ The inverse of the < relation over \mathbb{N}_0 is the > relation.
- Relation R with xRy iff person x has a key for y.
 Inverse: Q with aQb iff lock a can be openened by person b.

German: inverse Relation oder Umkehrrelation

Composition of Relations

Definition (Composition of relations)

Let R_1 be a relation over A and B and R_2 a relation over B and C.

The composition of R_1 and R_2 is the relation $R_2 \circ R_1$ over A and C with:

$$R_2 \circ R_1 = \{(a,c) \mid \text{there is a } b \in B \text{ with}$$
 $(a,b) \in R_1 \text{ and } (b,c) \in R_2\}$

How can we illustrate this graphically?

German: Komposition oder Rückwärtsverkettung

Composition of Relations: Example

```
S_1 = \{1, 2, 3, 4\}

S_2 = \{A, B, C, D, E\}

S_3 = \{a, b, c, d\}

R_1 = \{(1, A), (1, B), (3, B), (4, D)\} over S_1 and S_2

R_2 = \{(B, a), (C, c), (D, a), (D, d)\} over S_2 and S_3

R_2 \circ R_1 = \{(B, a), (C, c), (D, a), (D, d)\}
```

Composition is Associative

Theorem (Associativity of composition)

Let S_1, \ldots, S_4 be sets and R_1, R_2, R_3 relations with $R_i \subseteq S_i \times S_{i+1}$. Then

$$R_3\circ (R_2\circ R_1)=(R_3\circ R_2)\circ R_1.$$

Proof.

It holds that $(x_1, x_4) \in R_3 \circ (R_2 \circ R_1)$ iff there is an x_3 with $(x_1, x_3) \in R_2 \circ R_1$ and $(x_3, x_4) \in R_3$.

As $(x_1, x_3) \in R_2 \circ R_1$ iff there is an x_2 with $(x_1, x_2) \in R_1$ and $(x_2, x_3) \in R_2$, we have overall that $(x_1, x_4) \in R_3 \circ (R_2 \circ R_1)$ iff there are x_2, x_3 with $(x_1, x_2) \in R_1$, $(x_2, x_3) \in R_2$ and $(x_3, x_4) \in R_3$.

This is the case iff there is an x_2 with $(x_1, x_2) \in R_1$ and $(x_2, x_4) \in R_3 \circ R_2$, which holds iff $(x_1, x_4) \in (R_3 \circ R_2) \circ R_1$.

(Reflexive) Transitive Closure

Definition ((Reflexive) transitive closure)

Let R be a relation over set S.

The transitive closure R^+ of R is the smallest relation over S that is transitive and has R as a subset.

The reflexive transitive closure R^* of R is the smallest relation over S that is reflexive, transitive and has R as a subset.

The (reflexive) transitive closure always exists. Why?

Example: If aRb specifies that there is a direct flight from a to b, what do R^+ and R^* express?

German: (reflexive) transitive Hülle

Transitive Closure and *n*-fold Composition

Define the n-fold composition of a relation R over S as

$$R_0 = \{(x,x) \mid x \in S\}$$
 and $R_i = R \circ R_{i-1}$ for $i > 1$.

Theorem

Let R be a relation over set S.

Then
$$R^+ = \bigcup_{i=1}^{\infty} R_i$$
 and $R^* = \bigcup_{i=0}^{\infty} R_i$.

Without proof.

German: *n*-fache Komposition

Other Operators

- There are many more operators, also for general relations.
- Highly relevant for queries over relational databases.
- For example, join operators combine relations based on common entries.
- Example for a natural join:

Employee			Dept			Employee ⋈ Dept				
Name	Empld	DeptName		DeptName	Manager		Name	Empld	DeptName	1
Harry	3415	Finance		Finance	George		Harry	3415	Finance	,
Sally	2241	Sales		Sales	Harriet		Sally	2241	Sales	ı
George	3401	Finance		Production	Charles		George	3401	Finance	C
Harriet	2202	Sales					Harriet	2202	Sales	H
Mary	1257	Human Resources							(Source: W	/ik

Summary

- ► Relations: general, binary, homogeneous
- Properties: reflexivity, symmetry, transitivity (and related properties)
- Special relations: equivalence relations, order relations
- Operations: inverse, composition, transitive closure

13 / 13