Discrete Mathematics in Computer Science B4. Operations on Relations

Malte Helmert, Gabriele Röger

University of Basel

October 14, 2024

M. Helmert, G. Röger (University of Basel) [Discrete Mathematics in Computer Science](#page-12-0) October 14, 2024 1 / 13

Discrete Mathematics in Computer Science October 14, 2024 — B4. Operations on Relations

B4.1 [Operations on Relations](#page-2-0)

M. Helmert, G. Röger (University of Basel) [Discrete Mathematics in Computer Science](#page-0-0) October 14, 2024 2 / 13

B4.1 [Operations on Relations](#page-2-0)

M. Helmert, G. Röger (University of Basel) [Discrete Mathematics in Computer Science](#page-0-0) October 14, 2024 3 / 13

Relations: Recap

- A relation over sets S_1, \ldots, S_n is a set $R \subseteq S_1 \times \cdots \times S_n$.
- \blacktriangleright A binary relation is a relation over two sets.
- \blacktriangleright A homogeneous relation R over set S is a binary relation $R \subset S \times S$.

Set Operations

- \triangleright Relations are sets of tuples, so we can build their union, intersection, complement,
- Let R be a relation over S_1, \ldots, S_n and R' a relation over S'_1, \ldots, S'_n . Then $R \cup R'$ is a relation over $S_1 \cup S'_1, \ldots, S_n \cup S'_n$. With the standard relations \lt , = and \lt for \mathbb{N}_0 . relation \leq corresponds to the union of relations \leq and $=$.
- \blacktriangleright Let R and R' be relations over n sets. Then $R \cap R'$ is a relation. Over which sets?

With the standard relations $\leq,$ = and \geq for \mathbb{N}_0 , relation = corresponds to the intersection of \leq and \geq .

If R is a relation over S_1, \ldots, S_n then so is the complementary relation $\overline{R} = (S_1 \times \cdots \times S_n) \setminus R$. With the standard relations for \mathbb{N}_0 , relation = is the complementary relation of \neq and $>$ the one of \leq .

Inverse of a Relation

Definition Let $R \subseteq A \times B$ be a binary relation over A and B. The inverse relation of R is the relation $R^{-1} \subseteq B \times A$ given by $R^{-1} = \{ (b, a) \mid (a, b) \in R \}.$

- \blacktriangleright The inverse of the \lt relation over \mathbb{N}_0 is the \gt relation.
- Extem R with xRy iff person x has a key for y. Inverse: Q with aQb iff lock a can be openened by person b .

German: inverse Relation oder Umkehrrelation

M. Helmert, G. Röger (University of Basel) [Discrete Mathematics in Computer Science](#page-0-0) 0ctober 14, 2024 6 / 13

Composition of Relations

Definition (Composition of relations)

Let R_1 be a relation over A and B and R_2 a relation over B and C. The composition of R_1 and R_2 is the relation $R_2 \circ R_1$ over A and C with:

> $R_2 \circ R_1 = \{(a, c) \mid \text{there is a } b \in B \text{ with } \}$ $(a, b) \in R_1$ and $(b, c) \in R_2$

How can we illustrate this graphically?

German: Komposition oder Rückwärtsverkettung

M. Helmert, G. Röger (University of Basel) [Discrete Mathematics in Computer Science](#page-0-0) October 14, 2024 7 / 13

Composition of Relations: Example

$$
S_1 = \{1, 2, 3, 4\}
$$

\n
$$
S_2 = \{A, B, C, D, E\}
$$

\n
$$
S_3 = \{a, b, c, d\}
$$

\n
$$
R_1 = \{(1, A), (1, B), (3, B), (4, D)\} \text{ over } S_1 \text{ and } S_2
$$

\n
$$
R_2 = \{(B, a), (C, c), (D, a), (D, d)\} \text{ over } S_2 \text{ and } S_3
$$

\n
$$
R_2 \circ R_1 =
$$

M. Helmert, G. Röger (University of Basel) [Discrete Mathematics in Computer Science](#page-0-0) October 14, 2024 8 / 13

Composition is Associative

Theorem (Associativity of composition) Let S_1, \ldots, S_4 be sets and R_1, R_2, R_3 relations with $R_i \subseteq S_i \times S_{i+1}$. Then

$$
R_3\circ (R_2\circ R_1)=(R_3\circ R_2)\circ R_1.
$$

Proof.

It holds that $(x_1, x_4) \in R_3 \circ (R_2 \circ R_1)$ iff there is an x_3 with $(x_1, x_3) \in R_2 \circ R_1$ and $(x_3, x_4) \in R_3$.

As $(x_1, x_3) \in R_2 \circ R_1$ iff there is an x_2 with $(x_1, x_2) \in R_1$ and $(x_2, x_3) \in R_2$, we have overall that $(x_1, x_4) \in R_3 \circ (R_2 \circ R_1)$ iff there are x_2, x_3 with $(x_1, x_2) \in R_1$, $(x_2, x_3) \in R_2$ and $(x_3, x_4) \in R_3$.

This is the case iff there is an x_2 with $(x_1, x_2) \in R_1$ and $(x_2, x_4) \in R_3 \circ R_2$, which holds iff $(x_1, x_4) \in (R_3 \circ R_2) \circ R_1$.

(Reflexive) Transitive Closure

Definition ((Reflexive) transitive closure)

Let R be a relation over set S .

The transitive closure R^+ of R is the smallest relation over S that is transitive and has R as a subset.

The reflexive transitive closure R^* of R is the smallest relation over S that is reflexive, transitive and has R as a subset.

The (reflexive) transitive closure always exists. Why?

Example: If aRb specifies that there is a direct flight from a to b, what do R^+ and R^* express?

German: (reflexive) transitive Hülle

M. Helmert, G. Röger (University of Basel) [Discrete Mathematics in Computer Science](#page-0-0) October 14, 2024 10 / 13

Transitive Closure and n-fold Composition

Define the *n*-fold composition of a relation R over S as

$$
R_0 = \{(x, x) \mid x \in S\} \qquad \text{and}
$$

$$
R_i = R \circ R_{i-1} \qquad \text{for } i > 1.
$$

Theorem Let R be a relation over set S . Then $R^+ = \bigcup_{i=1}^{\infty} R_i$ and $R^* = \bigcup_{i=0}^{\infty} R_i$.

Without proof.

German: n-fache Komposition

M. Helmert, G. Röger (University of Basel) [Discrete Mathematics in Computer Science](#page-0-0) October 14, 2024 11 / 13

Other Operators

- ▶ There are many more operators, also for general relations.
- \blacktriangleright Highly relevant for queries over relational databases.
- ▶ For example, join operators combine relations based on common entries.
- \blacktriangleright Example for a natural join:

Summary

- \triangleright Relations: general, binary, homogeneous
- ▶ Properties: reflexivity, symmetry, transitivity (and related properties)
- ▶ Special relations: equivalence relations, order relations
- ▶ Operations: inverse, composition, transitive closure