Discrete Mathematics in Computer Science B3. Equivalence and Order Relations

Malte Helmert, Gabriele Röger

University of Basel

October 7/9, 2024

Equivalence Relations

Motivation

- Think of any attribute that two objects can have in common, e. g. their color.
- We could place the objects into distinct "buckets",e. g. one bucket for each color.
- We also can define a relation ~ such that x ~ y iff x and y share the attribute, e. g.have the same color.
- Would this relation be
 - reflexive?
 - irreflexive?
 - symmetric?
 - asymmetric?
 - antisymmetric?
 - transitive?

Equivalence Relation

Definition (Equivalence Relation)

A binary relation \sim over set ${\cal S}$ is an equivalence relation if \sim is reflexive, symmetric and transitive.

German: Äquivalenzrelation

Equivalence Relation

Definition (Equivalence Relation)

A binary relation \sim over set S is an equivalence relation if \sim is reflexive, symmetric and transitive.

Examples:

- $\{(x,y) \mid x \text{ and } y \text{ have the same place of origin}\}$ over the set of all Swiss citizens
- $\{(x,y) \mid x \text{ and } y \text{ have the same parity}\}$ over \mathbb{N}_0
- $\{(1,1),(1,4),(1,5),(4,1),(4,4),(4,5),(5,1),(5,4),(5,5),(2,2),(2,3),(3,2),(3,3)\} \text{ over } \{1,2,\ldots,5\}$

German: Äquivalenzrelation

Equivalence Relation

Definition (Equivalence Relation)

A binary relation \sim over set S is an equivalence relation if \sim is reflexive, symmetric and transitive.

Examples:

- $\{(x,y) \mid x \text{ and } y \text{ have the same place of origin}\}$ over the set of all Swiss citizens
- $\{(x,y) \mid x \text{ and } y \text{ have the same parity}\}$ over \mathbb{N}_0
- $\{(1,1),(1,4),(1,5),(4,1),(4,4),(4,5),(5,1),(5,4),(5,5),(2,2),(2,3),(3,2),(3,3)\} \text{ over } \{1,2,\ldots,5\}$

Is this definition indeed what we want?

Does it allow us to partition the objects into buckets
(e.g. one "bucket" for all objects that share a specific color)?

German: Äquivalenzrelation

Equivalence Classes

Definition (Equivalence Class)

Let \sim be an equivalence relation over set S.

For any $x \in S$, the equivalence class of x is the set

$$[x]_{\sim} = \{ y \in S \mid x \sim y \}.$$

German: Äquivalenzklasse

Equivalence Classes

Definition (Equivalence Class)

Let \sim be an equivalence relation over set S.

For any $x \in S$, the equivalence class of x is the set

$$[x]_{\sim} = \{ y \in S \mid x \sim y \}.$$

Consider

$$\sim = \{(1,1), (1,4), (1,5), (4,1), (4,4), (4,5), (5,1), (5,4), (5,5), \\ (2,2), (2,3), (3,2), (3,3)\}$$
 over set $\{1,2,\ldots,5\}$.

$$[4]_{\sim} =$$

German: Äquivalenzklasse

Equivalence Classes: Properties

Let \sim be an equivalence relation over set S and $E = \{[x]_{\sim} \mid x \in S\}$ the set of all equivalence classes.

- Every element of S is in some equivalence class in E.
- **E** Every element of S is in at most one equivalence class in E.
 - → homework assignment

Equivalence Classes: Properties

Let \sim be an equivalence relation over set S and $E = \{[x]_{\sim} \mid x \in S\}$ the set of all equivalence classes.

- Every element of *S* is in some equivalence class in *E*.
- Every element of S is in at most one equivalence class in E.
 → homework assignment
- ⇒ Equivalence relations induce partitions (not covered in this course).

Questions

Questions?

Order Relations

Order Relations

■ We now consider other combinations of properties, that allow us to describe a consistent order of the objects.

German: Ordnungsrelation

Order Relations

- We now consider other combinations of properties, that allow us to describe a consistent order of the objects.
- "Number x is not larger than number y."
 "Set S is a subset of set T."
 "Jerry runs at least as fast as Tom."
 "Pasta tastes better than Potatoes."

German: Ordnungsrelation

Partial Orders

■ We begin with partial orders.

Partial Orders

- We begin with partial orders.
- Example partial order relations are \leq over \mathbb{N}_0 or \subseteq for sets.

Partial Orders

- We begin with partial orders.
- Example partial order relations are \leq over \mathbb{N}_0 or \subseteq for sets.
- Are these relations
 - reflexive?
 - irreflexive?
 - symmetric?
 - asymmetric?
 - antisymmetric?
 - transitive?

Partial Orders - Definition

Definition (Partial order)

A binary relation \leq over set S is a partial order if \leq is reflexive, antisymmetric and transitive.

Partial Orders - Definition

Definition (Partial order)

A binary relation \leq over set S is a partial order if \leq is reflexive, antisymmetric and transitive.

Which of these relations are partial orders?

- strict subset relation ⊂ for sets
 - not-less-than relation \geq over \mathbb{N}_0
 - $R = \{(a, a), (a, b), (b, b), (b, c), (c, c)\} \text{ over } \{a, b, c\}$

German: Halbordnung oder partielle Ordnung

Definition (Least and greatest element)

Let \leq be a partial order over set S.

An element $x \in S$ is the least element of S

if for all $y \in S$ it holds that $x \leq y$.

It is the greatest element of S if for all $y \in S$, $y \leq x$.

Definition (Least and greatest element)

Let \leq be a partial order over set S.

An element $x \in S$ is the least element of S if for all $y \in S$ it holds that $x \leq y$.

It is the greatest element of S if for all $y \in S$, $y \leq x$.

- Is there a least/greatest element? Which one?
 - $S = \{1, 2, 3\}$ and $\leq = \{(x, y) \mid x, y \in S \text{ and } x \leq y\}$

Definition (Least and greatest element)

Let \leq be a partial order over set S.

An element $x \in S$ is the least element of S if for all $y \in S$ it holds that $x \leq y$.

It is the greatest element of S if for all $y \in S$, $y \leq x$.

- Is there a least/greatest element? Which one?
 - $S = \{1, 2, 3\}$ and $\leq = \{(x, y) \mid x, y \in S \text{ and } x \leq y\}$
 - relation \leq over \mathbb{N}_0

Definition (Least and greatest element)

Let \leq be a partial order over set S.

An element $x \in S$ is the least element of S

if for all $y \in S$ it holds that $x \leq y$.

It is the greatest element of S if for all $y \in S$, $y \leq x$.

- Is there a least/greatest element? Which one?
 - $S = \{1, 2, 3\}$ and $\leq = \{(x, y) \mid x, y \in S \text{ and } x \leq y\}$
 - relation \leq over \mathbb{N}_0
 - \blacksquare relation \leq over $\mathbb Z$

Definition (Least and greatest element)

Let \leq be a partial order over set S.

An element $x \in S$ is the least element of S

if for all $y \in S$ it holds that $x \leq y$.

It is the greatest element of S if for all $y \in S$, $y \leq x$.

- Is there a least/greatest element? Which one?
 - $S = \{1, 2, 3\}$ and $\leq = \{(x, y) \mid x, y \in S \text{ and } x \leq y\}$
 - relation \leq over \mathbb{N}_0
 - \blacksquare relation \leq over \mathbb{Z}
- Why can we say the least element instead of a least element?

Theorem

Let \leq be a partial order over set S.

If S contains a least element, it contains exactly one least element.

$\mathsf{Theorem}$

Let \leq be a partial order over set S.

If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$.

$\mathsf{Theorem}$

Let \leq be a partial order over set S.

If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$.

Since x is a least element, $x \leq y$ is true.

Since y is a least element, $y \leq x$ is true.

$\mathsf{Theorem}$

Let \leq be a partial order over set S.

If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$.

Since x is a least element, $x \leq y$ is true.

Since y is a least element, $y \prec x$ is true.

Since y is a least element, $y \leq x$ is true.

As a partial order is antisymmetric, this implies that x=y. $\mbox{\it ξ}$

$\mathsf{Theorem}$

Let \leq be a partial order over set S.

If S contains a least element, it contains exactly one least element.

Proof.

By contradiction: Assume x, y are least elements of S with $x \neq y$.

Since x is a least element, $x \leq y$ is true.

Since y is a least element, $y \leq x$ is true.

As a partial order is antisymmetric, this implies that x = y. $\mbox{\em ξ}$

Analogously: If there is a greatest element then is unique.

Minimal and Maximal Elements

Definition (Minimal/Maximal element of a set)

Let \leq be a partial order over set S.

An element $x \in S$ is a minimal element of S if there is no $y \in S$ with $y \preceq x$ and $x \neq y$.

An element $x \in S$ is a maximal element of S if there is no $y \in S$ with $x \leq y$ and $x \neq y$.

German: minimales/maximales Element

Minimal and Maximal Elements

Definition (Minimal/Maximal element of a set)

Let \leq be a partial order over set S.

An element $x \in S$ is a minimal element of S if there is no $y \in S$ with $y \leq x$ and $x \neq y$.

An element $x \in S$ is a maximal element of S if there is no $y \in S$ with $x \leq y$ and $x \neq y$.

A set can have several minimal elements and no least element. Example?

German: minimales/maximales Element

■ Relations \leq over \mathbb{N}_0 and \subseteq for sets are partial orders.

- Relations \leq over \mathbb{N}_0 and \subseteq for sets are partial orders.
- Can we compare every object against every object?

- Relations \leq over \mathbb{N}_0 and \subseteq for sets are partial orders.
- Can we compare every object against every object?
 - For all $x, y \in \mathbb{N}_0$ it holds that $x \leq y$ or that $y \leq x$ (or both).

- Relations \leq over \mathbb{N}_0 and \subseteq for sets are partial orders.
- Can we compare every object against every object?
 - For all $x, y \in \mathbb{N}_0$ it holds that $x \leq y$ or that $y \leq x$ (or both).
 - $\blacksquare \ \{1,2\} \not\subseteq \{2,3\} \ \mathsf{and} \ \{2,3\} \not\subseteq \{1,2\}$

- Relations \leq over \mathbb{N}_0 and \subseteq for sets are partial orders.
- Can we compare every object against every object?
 - For all $x, y \in \mathbb{N}_0$ it holds that $x \leq y$ or that $y \leq x$ (or both).
 - $\{1,2\} \nsubseteq \{2,3\}$ and $\{2,3\} \nsubseteq \{1,2\}$
- Relation \leq is a total order, relation \subseteq is not.

Total Order – Definition

Definition (Total relation)

A binary relation R over set S is total if for all $x, y \in S$ at least one of xRy or yRx is true.

German: totale Relation

Total Order – Definition

Definition (Total relation)

A binary relation R over set S is total if for all $x, y \in S$ at least one of xRy or yRx is true.

Definition (Total order)

A binary relation is a total order if it is total and a partial order.

German: totale Relation, (schwache) Totalordnung oder totale Ordnung

Questions

Questions?

Strict Orders

- A partial order is reflexive, antisymmetric and transitive.
- We now consider strict orders.

Strict Orders

- A partial order is reflexive, antisymmetric and transitive.
- We now consider strict orders.
- Example strict order relations are < over \mathbb{N}_0 or \subset for sets.

Strict Orders

- A partial order is reflexive, antisymmetric and transitive.
- We now consider strict orders.
- Example strict order relations are < over \mathbb{N}_0 or \subset for sets.
- Are these relations
 - reflexive?
 - irreflexive?
 - symmetric?
 - asymmetric?
 - antisymmetric?
 - transitive?

Definition (Strict (partial) order)

A binary relation \prec over set S is a strict (partial) order if \prec is irreflexive, asymmetric and transitive.

Definition (Strict (partial) order)

A binary relation \prec over set S is a strict (partial) order if \prec is irreflexive, asymmetric and transitive.

Which of these relations are strict orders?

- subset relation ⊆ for sets
- strict superset relation ⊃ for sets

Definition (Strict (partial) order)

A binary relation \prec over set S is a strict (partial) order if \prec is irreflexive, asymmetric and transitive.

Which of these relations are strict orders?

- subset relation ⊂ for sets
- strict superset relation ⊃ for sets

Can a relation be both, a partial order and a strict (partial) order?

Definition (Strict (partial) order)

A binary relation \prec over set S is a strict (partial) order if \prec is irreflexive, asymmetric and transitive.

Which of these relations are strict orders?

- subset relation ⊂ for sets
- strict superset relation ⊃ for sets

Can a relation be both, a partial order and a strict (partial) order?

We can omit irreflexivity or asymmetry from the definition (but not both). Why?

As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.

- As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.
- Example 1 (personal preferences):
 - "Pasta tastes better than potato."
 - "Rice tastes better than bread."
 - "Bread tastes better than potato."
 - "Rice tastes better than potato."
 - This definition of "tastes better than" is a strict order.
 - No ranking of pasta against rice or of pasta against bread.

Potato >

Pasta

Bread

Rice

- As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.
- Example 1 (personal preferences):
 - "Pasta tastes better than potato."
 - "Rice tastes better than bread."
 - "Bread tastes better than potato."
 - "Rice tastes better than potato."
 - This definition of "tastes better than" is a strict order.
 - No ranking of pasta against rice or of pasta against bread.

Potato >

Pasta

Bread

Rice

■ Example 2: ⊂ relation for sets

- As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.
- Example 1 (personal preferences):
 - "Pasta tastes better than potato."
 - "Rice tastes better than bread."
 - "Bread tastes better than potato."
 - "Rice tastes better than potato."
 - This definition of "tastes better than" is a strict order.
 - No ranking of pasta against rice or of pasta against bread.

Potato **→**

Pasta

Bread)

Rice

- **Example 2**: ⊂ relation for sets
- It doesn't work to simply require that the strict order is total.
 Why?

Strict Total Orders - Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all $x, y \in S$ exactly one of xRy, yRx or x = y is true.

German: trichotom

Strict Total Orders - Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all $x, y \in S$ exactly one of xRy, yRx or x = y is true.

Definition (Strict total order)

A binary relation \prec over S is a strict total order if \prec is trichotomous and a strict order.

A strict total order completely ranks the elements of set S.

Example: < relation over \mathbb{N}_0 gives the standard ordering $0, 1, 2, 3, \ldots$ of natural numbers.

German: trichotom, strenge Totalordnung

Strict Total Orders - Definition

Definition (Trichotomy)

A binary relation R over set S is trichotomous if for all $x, y \in S$ exactly one of xRy, yRx or x = y is true.

Definition (Strict total order)

A binary relation \prec over S is a strict total order if \prec is trichotomous and a strict order.

A strict total order completely ranks the elements of set S.

Example: < relation over \mathbb{N}_0 gives the standard ordering $0, 1, 2, 3, \ldots$ of natural numbers.

Attention: a non-empty strict total order is never a total order.

German: trichotom, strenge Totalordnung

Special Elements

Special elements are defined almost as for partial orders:

Definition (Least/greatest/minimal/maximal element of a set)

Let \prec be a strict order over set S.

An element $x \in S$ is the least element of S if for all $y \in S$ where $y \neq x$ it holds that $x \prec y$.

It is the greatest element of S if for all $y \in S$ where $y \neq x$, $y \prec x$.

Element $x \in S$ is a minimal element of S if there is no $y \in S$ with $y \prec x$.

It is a maximal element of S if there is no $y \in S$ with $x \prec y$.

Special Elements – Example

Consider again the previous example:

Is there a least and a greatest element? Which elements are maximal or minimal?

Questions

Questions?

Summary

■ An equivalence relation is reflexive, symmetric and transitive.

Summary

- An equivalence relation is reflexive, symmetric and transitive.
- A partial order $x \leq y$ is reflexive, antisymmetric and transitive.
 - If x is the greatest element of a set S, it is greater than every element: for all $y \in S$ it holds that $y \leq x$.
 - If x is a maximal element of set S then it is not smaller than any other element y: there is no $y \in S$ with $x \leq y$ and $x \neq y$.
 - A total order is a partial order without incomparable objects.

Summary

- An equivalence relation is reflexive, symmetric and transitive.
- A partial order $x \leq y$ is reflexive, antisymmetric and transitive.
 - If x is the greatest element of a set S, it is greater than every element: for all $y \in S$ it holds that $y \leq x$.
 - If x is a maximal element of set S then it is not smaller than any other element y: there is no $y \in S$ with $x \leq y$ and $x \neq y$.
 - A total order is a partial order without incomparable objects.
- A strict order is irreflexive, asymmetric and transitive.
 - Strict total orders and special elements are analogously defined as for partial orders but with a special treatment of equal elements.