Discrete Mathematics in Computer Science B2. Relations

Malte Helmert, Gabriele Röger

University of Basel

October 7, 2024

Discrete Mathematics in Computer Science October 7, 2024 — B2. Relations

B2.1 Relations

B2.2 Properties of Binary Relations

B2. Relations Relations

B2.1 Relations

B2 Relations Relations

Relations: Informally

Intuitively, a mathematical relation connects elements from several (possibly different) sets by specifying related groupings.

- We already know some relations, e. g.
 - c relation for sets
 - < relation for natural numbers</p>
- These are examples of binary relations, considering pairs of objects.
- There are also relations of higher arity, e.g.
 - "x + y = z" for integers x, y, z.
 - "The name, address and office number belong to the same person."
- Relations are for example important for relational databases, semantic networks or knowledge representation and reasoning.

B2. Relations Relations

Relations

Definition (Relation)

Let S_1, \ldots, S_n be sets.

A relation over S_1, \ldots, S_n is a set $R \subseteq S_1 \times \cdots \times S_n$.

The arity of R is n.

A relation of arity n is a set of n-tuples.

German: Relation, Stelligkeit

B2. Relations Relations

Relations: Examples

- $\subseteq = \{ (S, S') \mid S \text{ and } S' \text{ are sets and }$ for every $x \in S$ it holds that $x \in S' \}$
- ► $\leq = \{(x, y) \mid x, y \in \mathbb{N}_0 \text{ and } x < y \text{ or } x = y\}$
- $R = \{(x, y, z) \mid x, y, z \in \mathbb{Z} \text{ and } x + y = z\}$
- ► R' = {(Gabi Röger, Spiegelgasse 1, 04.005), (Malte Helmert, Spiegelgasse 1, 06.004), (Florian Pommerening, Spiegelgasse 1, 04.005)}

B2.2 Properties of Binary Relations

Binary Relation

A binary relation is a relation of arity 2:

Definition (binary relation)

A binary relation is a relation over two sets A and B.

- Instead of $(x, y) \in R$, we also write xRy, e.g. $x \le y$ instead of $(x, y) \in S$
- ► If the sets are equal, we say "R is a binary relation over A" instead of "R is a binary relation over A and A".
- Such a relation over a set is also called a homogeneous relation or an endorelation.

German: zweistellige Relation, homogene Relation

Reflexivity

A reflexive relation relates every object to itself.

Definition (reflexive)

A binary relation R over set A is reflexive if for all $a \in A$ it holds that $(a, a) \in R$.

Which of these relations are reflexive?

- $R = \{(a, a), (a, b), (a, c), (b, a), (b, c), (c, c)\} \text{ over } \{a, b, c\}$
- $ightharpoonup R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\} \text{ over } \{a, b, c\}$
- equality relation = on natural numbers
- ▶ less-than relation ≤ on natural numbers
- strictly-less-than relation < on natural numbers</p>

German: reflexiv

Irreflexivity

A irreflexive relation never relates an object to itself.

Definition (irreflexive)

A binary relation R over set A is irreflexive if for all $a \in A$ it holds that $(a, a) \notin R$.

Which of these relations are irreflexive?

- $R = \{(a, a), (a, b), (a, c), (b, a), (b, c), (c, c)\} \text{ over } \{a, b, c\}$
- $ightharpoonup R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\} \text{ over } \{a, b, c\}$
- equality relation = on natural numbers
- ▶ less-than relation ≤ on natural numbers
- strictly-less-than relation < on natural numbers

German: irreflexiv

Symmetry

Definition (symmetric)

A binary relation R over set A is symmetric if for all $a, b \in A$ it holds that $(a, b) \in R$ iff $(b, a) \in R$.

Which of these relations are symmetric?

- $R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\}$ over $\{a, b, c\}$
- $Arr R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\} \text{ over } \{a, b, c\}$
- equality relation = on natural numbers
- less-than relation < on natural numbers</p>
- strictly-less-than relation < on natural numbers

German: symmetrisch

Asymmetry and Antisymmetry

How do these properties relate to irreflexivity?

Relations

Definition (asymmetric and antisymmetric)

Let R be a binary relation over set A.

Relation R is asymmetric if

for all $a, b \in A$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$.

Relation R is antisymmetric if for all $a, b \in A$ with $a \neq b$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$.

Which of these relations are asymmetric/antisymmetric?

- $R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\}$ over $\{a, b, c\}$
- $ightharpoonup R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\} \text{ over } \{a, b, c\}$
- equality relation = on natural numbers
- ▶ less-than relation < on natural numbers
- strictly-less-than relation < on natural numbers</p>

German: asymmetrisch, antisymmetrisch

Transitivity

Definition

A binary relation R over set A is transitive if it holds for all $a, b, c \in A$ that if $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$.

Which of these relations are transitive?

- $R = \{(a, a), (a, b), (a, c), (b, a), (c, a), (c, c)\} \text{ over } \{a, b, c\}$
- $ightharpoonup R = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\} \text{ over } \{a, b, c\}$
- equality relation = on natural numbers
- ▶ less-than relation < on natural numbers
- strictly-less-than relation < on natural numbers

German: transitiv

B2. Relations Summary

Summary

- ▶ A relation over sets $S_1, ..., S_n$ is a set $R \subseteq S_1 \times \cdots \times S_n$.
- A binary relation is a relation over two sets.
- A binary relation over set S is a relation $R \subseteq S \times S$ and also called a homogeneous relation.
- ► A binary relation *R* over *A* is
 - reflexive if $(a, a) \in R$ for all $a \in A$,
 - ▶ irreflexive if $(a, a) \notin R$ for all $a \in A$,
 - symmetric if for all $a, b \in A$ it holds that $(a, b) \in R$ iff $(b, a) \in R$,
 - **asymmetric** if for all $a, b \in A$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$,
 - **antisymmetric** if for all $a, b \in A$ with $a \neq b$ it holds that if $(a, b) \in R$ then $(b, a) \notin R$,
 - **transitive** if for all $a, b, c \in A$ it holds that if $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$.

B2. Relations Summary

Special Classes of Relations

- Some important classes of relations are defined in terms of these properties.
 - Equivalence relation: reflexive, symmetric, transitive
 - Partial order: reflexive, antisymmetric, transitive
 - Strict order: irreflexive, asymmetric, transitive
 - ..
- ▶ We will consider these and other classes in detail.