Discrete Mathematics in Computer Science B1. Tuples & Cartesian Product

Malte Helmert, Gabriele Röger

University of Basel

October 2, 2024

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

October 2, 2024 1 /

B1. Tuples & Cartesian Product

Tuples and the Cartesian Product

B1.1 Tuples and the Cartesian Product

Discrete Mathematics in Computer Science

October 2, 2024 — B1. Tuples & Cartesian Product

B1.1 Tuples and the Cartesian Product

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

October 2, 2024 2 / 10

B1. Tuples & Cartesian Product

Tuples and the Cartesian Product

Motivation

- ▶ A set is an unordered collection of distinct objects.
- ▶ We often need a more structured way of representation.
 - A person is associated with a name, address, phone number.
 - ► A set of persons makes sense in many contexts.
 - ▶ Representing the associated data as a set rather not.
- ► We could for example want to
 - directly access the name of a person, or
 - ▶ have a separate billing and delivery address for some order, but in general, these can be the same.
- ▶ Tuples are mathematical building blocks that support this.

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

October 2, 2024 3 / 3

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

October 2, 2024

4 / 10

B1. Tuples & Cartesian Product

Tuples and the Cartesian Product

Sets vs. Tuples

- A set is an unordered collection of distinct objects.
- ► A tuple is an ordered sequence of objects.

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

October 2, 2024

B1. Tuples & Cartesian Product

Tuples and the Cartesian Product

Equality of Tuples

Definition (Equality of Tuples)

Two *n*-tuples $t = \langle o_1, \dots, o_n \rangle$ and $t' = \langle o'_1, \dots, o'_n \rangle$ are equal (t = t') if for $i \in \{1, ..., n\}$ it holds that $o_i = o'_i$. B1. Tuples & Cartesian Product

Tuples and the Cartesian Product

Tuples

- **k**-tuple: ordered sequence of k objects $(k \in \mathbb{N}_0)$
- \triangleright written (o_1,\ldots,o_k) or $\langle o_1,\ldots,o_k\rangle$
- ▶ unlike sets, order matters $(\langle 1, 2 \rangle \neq \langle 2, 1 \rangle)$
- objects may occur multiple times in a tuple
- objects contained in tuples are called components
- terminology:
 - k=2: (ordered) pair
 - k = 3: triple
 - more rarely: quadruple, quintuple, sextuple, septuple, . . .
- if k is clear from context (or does not matter), often just called tuple

German: k-Tupel, Komponente, (geordnetes) Paar, Tripel, Quadrupel

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

October 2, 2024

B1. Tuples & Cartesian Product

Tuples and the Cartesian Product

Cartesian Product

Definition (Cartesian Product and Cartesian Power)

Let S_1, \ldots, S_n be sets. The Cartesian product $S_1 \times \cdots \times S_n$ is the following set of *n*-tuples:

$$S_1 \times \cdots \times S_n = \{\langle x_1, \dots, x_n \rangle \mid x_1 \in S_1, x_2 \in S_2, \dots, x_n \in S_n \}.$$

The k-ary Cartesian power of a set S (with $k \in \mathbb{N}_1$) is the set $S^k = \{\langle o_1, \dots, o_k \rangle \mid o_i \in S \text{ for all } i \in \{1, \dots, k\}\} = S \times \dots \times S$

René Descartes: French mathematician and philosopher (1596–1650)

Example: $A = \{a, b\}, B = \{1, 2, 3\}$

$$A \times B = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$$
$$A^{2} = \{(a, a), (a, b), (b, a), (b, b)\}$$

German: Kartesisches Produkt

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

B1. Tuples & Cartesian Product

Tuples and the Cartesian Product

(Non-)properties of the Cartesian Product

The Cartesian product is

- ▶ not commutative, in most cases $A \times B \neq B \times A$.
- ▶ not associative, in most cases $(A \times B) \times C \neq A \times (B \times C)$

Why? Exceptions?

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

October 2, 2024 9 /

B1. Tuples & Cartesian Product

Summary

- ► A *k*-tuple is an ordered sequence of *k* objects, called the components of the tuple.
- ▶ 2-tuples are also called pairs and 3-tuples triples.
- ▶ The Cartesian Product $S_1 \times \cdots \times S_n$ of set S_1, \ldots, S_n is the set of all tuples $\langle o_1, \ldots, o_n \rangle$, where for all $i \in \{1, \ldots, n\}$ component o_i is an element of S_i .

M. Helmert, G. Röger (University of Basel) Discrete Mathematics in Computer Science

October 2, 2024

10 / 10