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Proof Strategies



Common Forms of Statements

Many statements have one of these forms:

1 “All x ∈ S with the property P also have the property Q.”

2 “A is a subset of B.”

3 “For all x ∈ S : x has property P iff x has property Q.”

4 “A = B”, where A and B are sets.

In the following, we will discuss some typical proof/disproof
strategies for such statements.
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Proof Strategies

1 “All x ∈ S with the property P also have the property Q.”

“For all x ∈ S : if x has property P, then x has property Q.”

To prove, assume you are given an arbitrary x ∈ S
that has the property P.
Give a sequence of proof steps showing that x
must have the property Q.
To disprove, find a counterexample, i. e., find an x ∈ S
that has property P but not Q and prove this.



Proof Strategies

2 “A is a subset of B.”

To prove, assume you have an arbitrary element x ∈ A
and prove that x ∈ B.
To disprove, find an element in x ∈ A \ B
and prove that x ∈ A \ B.



Proof Strategies

3 “For all x ∈ S : x has property P iff x has property Q.”

(“iff”: “if and only if”)

To prove, separately prove “if P then Q” and “if Q then P”.
To disprove, disprove “if P then Q” or disprove “if Q then P”.



Proof Strategies

4 “A = B”, where A and B are sets.

To prove, separately prove “A ⊆ B” and “B ⊆ A”.
To disprove, disprove “A ⊆ B” or disprove “B ⊆ A”.



Proof Techniques

most common proof techniques:

direct proof

indirect proof (proof by contradiction)

contrapositive

mathematical induction

structural induction



Direct Proof



Direct Proof

Direct Proof

Direct derivation of the statement by deducing or rewriting.

German: Direkter Beweis



Direct Proof: Example

Theorem

For all sets A, B and C it holds that

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).

Proof.

Let A, B and C be arbitrary sets.

We will show separately that

A ∩ (B ∪ C ) ⊆ (A ∩ B) ∪ (A ∩ C ) and that

(A ∩ B) ∪ (A ∩ C ) ⊆ A ∩ (B ∪ C ).

. . .
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Direct Proof: Example cont.

Proof (continued).

We first show that A ∩ (B ∪ C ) ⊆ (A ∩ B) ∪ (A ∩ C ):

If A ∩ (B ∪ C ) is empty, the statement is trivially true. Otherwise
consider an arbitrary x ∈ A ∩ (B ∪ C ). By the definition of the
intersection it holds that x ∈ A and that x ∈ (B ∪ C ).
We make a case distinction between x ∈ B and x /∈ B:

Case 1 (x ∈ B): As x ∈ A is true, it holds in this case that
x ∈ (A ∩ B).

Case 2 (x /∈ B): From x ∈ (B ∪ C ) it follows for this case that
x ∈ C . With x ∈ A we conclude that x ∈ (A∩C ).

In both cases it holds that x ∈ A ∩ B or x ∈ A ∩ C , and we
conclude that x ∈ (A ∩ B) ∪ (A ∩ C ).

As x was chosen arbitrarily from A ∩ (B ∪ C ), we have shown that
every element of A ∩ (B ∪ C ) is an element of (A ∩ B) ∪ (A ∩ C ),
so it holds that A ∩ (B ∪ C ) ⊆ (A ∩ B) ∪ (A ∩ C ). . . .
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Direct Proof: Example cont.

Proof (continued).

We will now show that (A ∩ B) ∪ (A ∩ C ) ⊆ A ∩ (B ∪ C ).

. . . [Homework assignment] . . .

Overall we have shown for arbitrary sets A,B and C that
A ∩ (B ∪ C ) ⊆ (A ∩ B) ∪ (A ∩ C ) and that
(A∩B)∪ (A∩C ) ⊆ A∩ (B ∪C ), which concludes the proof of the
theorem.



Indirect Proof



Indirect Proof

Indirect Proof (Proof by Contradiction)

Make an assumption that the statement is false.

Use the assumption to derive a contradiction.

This shows that the assumption must be false
and hence the original statement must be true.

German: Indirekter Beweis, Beweis durch Widerspruch



Indirect Proof: Example

Theorem

Let A and B be sets. If A \ B = ∅ then A ⊆ B.

Proof.

We prove the theorem by contradiction.

Assume that there are sets A and B with A \ B = ∅ and A ̸⊆ B.

Let A and B be such sets.

Since A ̸⊆ B there is some x ∈ A such that x ̸∈ B.

For this x it holds that x ∈ A \ B.
This is a contradiction to A \ B = ∅.
We conclude that the assumption was false and thus the theorem
is true.
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Proof by Contrapositive



Contrapositive

(Proof by) Contrapositive

Prove “If A, then B” by proving “If not B, then not A.”

Examples:

Prove “For all n ∈ N0: if n
2 is odd, then n is odd”

by proving “For all n ∈ N0, if n is even, then n2 is even.”

Prove “For all n ∈ N0: if n is not a square number,
then

√
n is irrational” by proving “For all n ∈ N0:

if
√
n is rational, then n is a square number.”

German: Kontraposition
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Contrapositive: Example

Theorem

For any sets A and B: If A ⊆ B then A \ B = ∅.

Proof.

We prove the theorem by contrapositive, showing for any sets A
and B that if A \ B ̸= ∅ then A ̸⊆ B.

Let A and B be arbitrary sets with A \ B ̸= ∅.
As the set difference is not empty, there is at least one x with
x ∈ A \ B. By the definition of the set difference (\), it holds for
such x that x ∈ A and x /∈ B.

Hence, not all elements of A are elements of B, so it does not hold
that A ⊆ B.
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Summary

There are standard strategies for proving some common forms
of statements, e.g. some property of all elements of a set.

Direct proof: derive statement by deducing or rewriting.

Indirect proof: derive contradiction from the assumption that
the statement is false.

Proof by contrapositive: Prove “If A, then B” by proving “If
not B, then not A.”.
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