Solution of Exercise in A5

Gabi Röger

1 Basic definitions (from the slides)

The set β of binary trees is inductively defined as follows:

- \square is a binary tree (a *leaf*)
- If L and R are binary trees, then $\langle L, \bigcirc, R \rangle$ is a binary tree (with *inner* node \bigcirc).

The number of *leaves* of a binary tree B , written *leaves* (B) , is defined as follows:

$$
leaves(\square) = 1
$$

$$
leaves(\langle L, \bigcirc, R \rangle) = leaves(L) + leaves(R)
$$

The *height* of a binary tree B , written *height* (B) , is defined as follows:

$$
height(\Box) = 0
$$

$$
height(\langle L, \bigcirc, R \rangle) = \max\{height(L), height(R)\} + 1
$$

2 Example: Structural Induction

We will establish the following theorem:

Theorem 1. For all binary trees B: leaves(B) $\leq 2^{height(B)}$.

Proof. We prove the theorem by structural induction. Induction basis: If $B = \Box$, we have $leaves(\Box) = 1 = 2^0 = 2^{height(\Box)}$. Induction hypothesis: Suppose that for binary trees L and R it holds that $leaves(L) \leq 2^{height(L)}$ and $leaves(R) \leq 2^{height(R)}$.

Inductive step: Consider $B = \langle L, \bigcirc, R \rangle$.

By the definition of leaves, it holds that $leaves(B) = leaves(L) + leaves(R)$. Using the induction hypothesis, we get

leaves(B) = leaves(L) + leaves(R)
\n
$$
\stackrel{\text{IH}}{\le} 2^{\text{height}(L)} + 2^{\text{height}(R)}
$$
\n
$$
\stackrel{(*)}{\le} 2^{\max{\{\text{height}(L),\text{height}(R)\}}} + 2^{\max{\{\text{height}(L),\text{height}(R)\}}}
$$
\n
$$
= 2 \cdot 2^{\max{\{\text{height}(L),\text{height}(R)\}}}
$$
\n
$$
\stackrel{(**)}{=} 2 \cdot 2^{\text{height}(B) - 1}
$$
\n
$$
= 2^{\text{height}(B)}
$$

For inequality (*), we use that $height(L) \leq max{height(L), height(R)}$ and $height(R) \leq max\{height(L), height(R)\}.$ For equality (**), we use the definition of height. \Box