Planning and Optimization
G11. Operator Counting

Malte Helmert and Gabriele Roger

Universitat Basel

December 18, 2023

Content of this Course

— Landmarks
— Prelude
H Cost
— Foundations Partitioning
— Approaches - Post-Hoc
Optimization
_ Delete Relaxation i Network
Flows
— Abstraction

| Constraints | Ay
Heuristics

Introduction
©00

Introduction

Introduction counting Framework

Summary
0e0 00

Reminder: Flow Heuristic

In the previous chapter, we used flow constraints to describe
how often operators must be used in each plan.

Example (Flow Constraints)

Let I be a planning problem with operators {0red, Ogreen; Oblue }-
The flow constraint for some atom a is the constraint

1 + Count,,,,, = Count,,, if
m a is true in the initial state B Ogreen Produces a

m ais false in the goal B 0.4 COnsumes a

In natural language, the flow constraint expresses that

Introduction ounting Framework
0e0 00

Summary

Reminder: Flow Heuristic

In the previous chapter, we used flow constraints to describe
how often operators must be used in each plan.

Example (Flow Constraints)

Let I be a planning problem with operators {0red, Ogreen; Oblue }-
The flow constraint for some atom a is the constraint

1 + Count,,,,, = Count,,, if
m a is true in the initial state B Ogreen Produces a

m ais false in the goal B 0.4 COnsumes a

In natural language, the flow constraint expresses that

every plan uses 0,4 once more than ogeen.

Reminder: Flow Heuristic

Let us now observe how each flow constraint alters
the operator count solution space.

210
-
0_1»_1> 0_(11
022 (W
1_&0
1-1>1 3_2»2 2_1»1
—
73 =
310 2 21

Introduction c unting Framework >roper Summar

ooe

Reminder: Flow Heuristic

Let us now observe how each flow constraint alters
the operator count solution space.

210

“plans that use »
once more than »"
310 2 1

Introduction c counting Framework

ooe

Reminder: Flow Heuristic

Let us now observe how each flow constraint alters
the operator count solution space.

2_1>0

011

“plans that use »
as often as »"

001

“plans that use »
once more than »"

21

Operator-counting Framewor

-CO
900000000

Operator-counting Framework

Introduction

Operator-counting Framework
000000000

Summar

Operator Counting

Operator counting

generalizes this idea to a framework that allows to
admissibly combine different heuristics.

uses linear constraints ...
. that describe number of occurrences of an operator ...
. and must be satisfied by every plan.

provides declarative way to describe
knowledge about solutions.

allows reasoning about solutions to derive heuristic estimates.

00@000000

Introduction Operator-counting Framework

Operator-counting Constraint

Definition (Operator-counting Constraints)

Let I be a planning task with operators O and let s be a state.
Let V be the set of integer variables Count, for each o € O.

A linear inequality over V is called an operator-counting constraint
for s if for every plan 7 for s setting each Count, to the number of
occurrences of o in 7 is a feasible variable assignment.

’

Introduction Operator-counting Framework

000e00000

Operator-counting Heuristics

Definition (Operator-counting IP/LP Heuristic)

The operator-counting integer program IP¢ for a set C of
operator-counting constraints for state s is

Minimize Z cost(o) - Count, subject to

C and Count, > 0 for all 0 € O,

where O is the set of operators.

The IP heuristic hl¥ is the objective value of IPc,
the LP heuristic h'@P is the objective value of its LP-relaxation.

If the IP/LP is infeasible, the heuristic estimate is co.

Introduction Operator-counting Framework ’ es Summar

[e]e]e]e] lelelele]

Operator-counting Constraints

m Adding more constraints can only remove feasible solutions.
m Fewer feasible solutions can only increase the objective value.
m Higher objective value means better informed heuristic

= Have we already seen other operator-counting constraints?

Introduction Operator-counting Framework
000 00000@000

Summar

Reminder: Minimum Hitting Set for Landmarks

Variables

Non-negative variable Applied, for each operator o

Objective
Minimize) cost(o) - Applied,

> " Applied, > 1 for all landmarks L
o€l

Introduction Operator-counting Framework
000 00000@000

Summar

Operator Counting with Disjunctive Action Landmarks

Variables

Non-negative variable Count, for each operator o

Objective
Minimize)~ cost(o) - Count,

ZCounto > 1 for all landmarks L
o€L

0O00000e00

Introduction Operator-counting Framework es Summar

Reminder: Post-hoc Optimization Heuristic

For set of abstractions {a1,...,an}:

Variables

Non-negative variables X, for all operators 0 € O
X, is cost incurred by operator o

Objective
Minimize > .5 Xo

o
ZoEO:o relev. for o Xo 2 h (S) for o € {alv sy an}

Xo 20

forallo € O

Introduction Operator-counting Framework ’ro es Summar

0O00000e00

Operator Counting with Post-hoc Optimization Constraints

For set of abstractions {a1,...,a,}:

Variables

Non-negative variables Count, for all operators o € O
Count, - cost(0) is cost incurred by operator o

Objective

Minimize), cost(o) - Count,

(o
ZoEO:o relev. for « COSt(O) ’ Counto = h (S) for a € {a’la O 704n}

cost(o) - Count, > 0 forallo € O

Introduction Operator-counting Framework roper Summar

000000080

Example

210
5
112 000
> >
T2 1
>
131
220
“plans that use »
once more than »"
310

Introduction Operator-counting Framework

000000080

Example

11

-
“plans that use -

at least once”

2

“plans that use »
once more than »"

Introduction Operator-counting Framework

000000080

Example

11

5
“plans that use »

at least once”

2

2

“plans where - and
ost 4 or more together

“plans that use »
once more than »"

Introduction Operator-counting Framework

000000080

Example

11

-
“plans that use -

at least once”

2

“plans that use »
once more than »"

0O0000000e

Introduction Operator-counting Framework

Further Examples?

m The definition of operator-counting constraints can be
extended to groups of constraints and auxiliary variables.

m With this extended definition we could also cover
more heuristics, e.g., the perfect relaxation heuristic h™

Properties
€00000

Properties

0@0000

Introduction c inting Framework Properties

Admissibility

Theorem (Operator-counting Heuristics are Admissible)

The IP and the LP heuristic are admissible.

Let C be a set of operator-counting constraints for state s and w
be an optimal plan for s. The number of operator occurrences of m
are a feasible solution for C. As the IP/LP minimizes the total
plan cost, the objective value cannot exceed the cost of 7 and is
therefore an admissible estimate. [

[e]e] le]ele]

Introduction c ounting Framework Properties Summar

Dominance

Let C and C’ be sets of operator-counting constraints for s and let
CCC' Then|Pc <IP¢ and LPc < LP.

N

Every feasible solution of C’ is also feasible for C. As the LP/IP is
a minimization problem, the objective value subject to C can
therefore not be larger than the one subject to C’. Ol

V.

Adding more constraints can only improve the heuristic estimate.

[e]e]e] lele]

Introduction c inting Framework Properties

Heuristic Combination

Operator counting as heuristic combination
m Multiple operator-counting heuristics can be combined by
computing hkp/h'cp for the union of their constraints.

m This is an admissible combination.

m Never worse than maximum of individual heuristics
m Sometimes even better than their sum

m We already know a way of admissibly combining heuristics:
cost partitioning.
= How are they related?

Introduction ounting Framework Properties

[e]e]ele] Je]

Connection to Cost Partitioning

Let C1,...,C, be sets of operator-counting constraints for s and
C =", C. Then h'C-P is the optimal general cost partitioning
over the heuristics h'&',_).

.

Proof Sketch.

In LP¢, add variables Count’, and constraints Count, = Count,
for all operators 0 and 1 < i < n. Then replace Count, by
Count’ in C,.

Dualizing the resulting LP shows that h'@P computes a cost
partitioning. Dualizing the component heuristics of that cost
partitioning shows that they are h'@f’.

A\

Introduction O inting Framework Properties
000 o 00000e

Comparison to Optimal Cost Partitioning

m some heuristics are more compact if expressed as operator
counting

m some heuristics cannot be expressed as operator counting

m operator counting IP even better than optimal cost
partitioning

m Cost partitioning maximizes, so heuristics must be encoded
perfectly to guarantee admissibility.

Operator counting minimizes, so missing information just
makes the heuristic weaker.

Summan
0

Summary

Introduction c inting Framework 2 es Summary
000 O © o

Summary

m Many heuristics can be formulated in terms of
operator-counting constraints.

m The operator counting heuristic framework allows to
combine the constraints and to reason on the entire
encoded declarative knowledge.

m The heuristic estimate for the combined constraints
can be better than the one of the best ingredient heuristic
but never worse.

m Operator counting is equivalent to optimal general cost
partitioning over individual constraints.

	Introduction
	

	Operator-counting Framework
	

	Properties
	

	Summary
	

