
Planning and Optimization
G9. Post-hoc Optimization

Malte Helmert and Gabriele Röger

Universität Basel

December 13, 2023

Introduction Post-hoc Optimization Comparison Summary

Content of this Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Critical Paths

Constraints

Landmarks

Cost
Partitioning

Post-Hoc
Optimization

Network
Flows

Operator
Counting

Potential
Heuristics

Introduction Post-hoc Optimization Comparison Summary

Introduction

Introduction Post-hoc Optimization Comparison Summary

Example Task (1)

Example (Example Task)

SAS+ task Π = ⟨V , I ,O, γ⟩ with
V = {A,B,C} with dom(v) = {0, 1, 2, 3, 4} for all v ∈ V

I = {A 7→ 0,B 7→ 0,C 7→ 0}
O = {incvx | v ∈ V , x ∈ {0, 1, 2}} ∪ {jumpv | v ∈ V }

incvx = ⟨v = x , v := x + 1, 1⟩
jumpv = ⟨

∧
v ′∈V :v ′ ̸=v v

′ = 4, v := 3, 1⟩
γ = A = 3 ∧ B = 3 ∧ C = 3

Each optimal plan consists of three increment operators for
each variable ⇝ h∗(I) = 9

Each operator affects only one variable.

Introduction Post-hoc Optimization Comparison Summary

Example Task (2)

In projections on single variables we can reach the goal with a
jump operator: h{A}(I) = h{B}(I) = h{C}(I) = 1.

In projections on more variables, we need for each variable
three applications of increment operators to reach the
abstract goal from the abstract initial state:
h{A,B}(I) = h{A,C}(I) = h{B,C}(I) = 6

Example (Canonical Heuristic)

C = {{A}, {B}, {C}, {A,B}, {A,C}, {B,C}}

hC(s) = max{h{A}(s) + h{B}(s) + h{C}(s), h{A}(s) + h{B,C}(s),

h{B}(s) + h{A,C}(s), h{C}(s) + h{A,B}(s)}

hC(I) = 7

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization Heuristic: Idea

Consider the example task:

type-v operator: operator modifying variable v

h{A,B} = 6
⇒ in any plan operators of type A or B incur at least cost 6.

h{A,C} = 6
⇒ in any plan operators of type A or C incur at least cost 6.

h{B,C} = 6
⇒ in any plan operators of type B or C incur at least cost 6.

⇒ any plan has at least cost ???.

(let’s use linear programming. . .)

⇒ any plan has at least cost 9.

Can we generalize this kind of reasoning?

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization Heuristic: Idea

Consider the example task:

type-v operator: operator modifying variable v

h{A,B} = 6
⇒ in any plan operators of type A or B incur at least cost 6.

h{A,C} = 6
⇒ in any plan operators of type A or C incur at least cost 6.

h{B,C} = 6
⇒ in any plan operators of type B or C incur at least cost 6.

⇒ any plan has at least cost ???.

(let’s use linear programming. . .)

⇒ any plan has at least cost 9.

Can we generalize this kind of reasoning?

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization Heuristic: Idea

Consider the example task:

type-v operator: operator modifying variable v

h{A,B} = 6
⇒ in any plan operators of type A or B incur at least cost 6.

h{A,C} = 6
⇒ in any plan operators of type A or C incur at least cost 6.

h{B,C} = 6
⇒ in any plan operators of type B or C incur at least cost 6.

⇒ any plan has at least cost ???.

(let’s use linear programming. . .)

⇒ any plan has at least cost 9.

Can we generalize this kind of reasoning?

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization Heuristic: Idea

Consider the example task:

type-v operator: operator modifying variable v

h{A,B} = 6
⇒ in any plan operators of type A or B incur at least cost 6.

h{A,C} = 6
⇒ in any plan operators of type A or C incur at least cost 6.

h{B,C} = 6
⇒ in any plan operators of type B or C incur at least cost 6.

⇒ any plan has at least cost ???.

(let’s use linear programming. . .)

⇒ any plan has at least cost 9.

Can we generalize this kind of reasoning?

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization Heuristic: Idea

Consider the example task:

type-v operator: operator modifying variable v

h{A,B} = 6
⇒ in any plan operators of type A or B incur at least cost 6.

h{A,C} = 6
⇒ in any plan operators of type A or C incur at least cost 6.

h{B,C} = 6
⇒ in any plan operators of type B or C incur at least cost 6.

⇒ any plan has at least cost ???.

(let’s use linear programming. . .)

⇒ any plan has at least cost 9.

Can we generalize this kind of reasoning?

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization Heuristic: Idea

Consider the example task:

type-v operator: operator modifying variable v

h{A,B} = 6
⇒ in any plan operators of type A or B incur at least cost 6.

h{A,C} = 6
⇒ in any plan operators of type A or C incur at least cost 6.

h{B,C} = 6
⇒ in any plan operators of type B or C incur at least cost 6.

⇒ any plan has at least cost ???.

(let’s use linear programming. . .)

⇒ any plan has at least cost 9.

Can we generalize this kind of reasoning?

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization Heuristic: Idea

Consider the example task:

type-v operator: operator modifying variable v

h{A,B} = 6
⇒ in any plan operators of type A or B incur at least cost 6.

h{A,C} = 6
⇒ in any plan operators of type A or C incur at least cost 6.

h{B,C} = 6
⇒ in any plan operators of type B or C incur at least cost 6.

⇒ any plan has at least cost ???.

(let’s use linear programming. . .)

⇒ any plan has at least cost 9.

Can we generalize this kind of reasoning?

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization

The heuristic that generalizes this kind of reasoning
is the Post-hoc Optimization Heuristic (PhO)

can be computed for any kind of heuristic . . .

. . . as long as we are able to determine relevance of operators

if in doubt, it’s always safe to assume
an operator is relevant for a heuristic

but for PhO to work well, it’s important that the set of
relevant operators is as small as possible

Introduction Post-hoc Optimization Comparison Summary

Operator Relevance in Abstractions

Definition (Reminder: Affecting Transition Labels)

Let T be a transition system, and let ℓ be one of its labels.

We say that ℓ affects T if T has a transition s
ℓ−→ t with s ̸= t.

Definition (Operator Relevance in Abstractions)

An operator o is relevant for an abstraction α if o affects T α.

We can efficiently determine operator relevance for abstractions.

Introduction Post-hoc Optimization Comparison Summary

Linear Program (1)

For a given set of abstractions {α1, . . . , αn}, we construct
a linear program:

variable Xo for each operator o ∈ O

intuitively, Xo is cost incurred by operator o

abstraction heuristics are admissible∑
o∈O

Xo ≥ hα(s) for α ∈ {α1, . . . , αn}

can tighten these constraints to∑
o∈O:o relevant for α

Xo ≥ hα(s) for α ∈ {α1, . . . , αn}

Introduction Post-hoc Optimization Comparison Summary

Linear Program (2)

For set of abstractions {α1, . . . , αn}:

Variables

Non-negative variables Xo for all operators o ∈ O

Objective

Minimize
∑

o∈O Xo

Subject to∑
o∈O:o relevant for α

Xo ≥ hα(s) for α ∈ {α1, . . . , αn}

Xo ≥ 0 for all o ∈ O

Introduction Post-hoc Optimization Comparison Summary

Simplifying the LP

Reduce the size of the LP by aggregating variables
which always occur together in constraints.

Happens if several operators are relevant
for exactly the same heuristics.

Partitioning O/∼ induced by this equivalence relation

One variable X[o] for each [o] ∈ O/∼

Introduction Post-hoc Optimization Comparison Summary

Example

Example

only operators o1, o2, o3 and o4 are relevant for h1
and h1(s0) = 11

only operators o3, o4, o5 and o6 are relevant for h2
and h2(s0) = 11

only operators o1, o2 and o6 are relevant for h3
and h3(s0) = 8

Which operators are relevant for exactly the same heuristics?
What is the resulting partitioning?

Answer: o1 ∼ o2 and o3 ∼ o4

Answer:

⇒ O/∼ = {[o1], [o3], [o5], [o6]}

Introduction Post-hoc Optimization Comparison Summary

Example

Example

only operators o1, o2, o3 and o4 are relevant for h1
and h1(s0) = 11

only operators o3, o4, o5 and o6 are relevant for h2
and h2(s0) = 11

only operators o1, o2 and o6 are relevant for h3
and h3(s0) = 8

Which operators are relevant for exactly the same heuristics?
What is the resulting partitioning?

Answer: o1 ∼ o2 and o3 ∼ o4

Answer:

⇒ O/∼ = {[o1], [o3], [o5], [o6]}

Introduction Post-hoc Optimization Comparison Summary

Simplifying the LP: Example

LP before aggregation

Variables

Non-negative variable X1, . . . ,X6

for operators o1, . . . , o6

Minimize X1 + X2 + X3 + X4 + X5 + X6 subject to

X1 + X2 + X3 + X4

+ X5 + X6

≥ 11

X1 + X2 +

X3 + X4 + X5 + X6 ≥ 11

X1 + X2

+ X3 + X4 + X5

+ X6 ≥ 8

Xi ≥ 0 for i ∈ {1, . . . , 6}

Introduction Post-hoc Optimization Comparison Summary

Simplifying the LP: Example

LP after aggregation

Variables

Non-negative variable X[1],X[3],X[5],X[6]

for equivalence classes [o1], [o3], [o5], [o6]

Minimize X[1] + X[3] + X[5] + X[6] subject to

X[1] + X[3]

+ X[5] + X[6]

≥ 11

X[1] +

X[3] + X[5] + X[6] ≥ 11

X[1] +

+ X[3] + X[5]

+ X[6] ≥ 8

Xi ≥ 0 for i ∈ {[1], [3], [5], [6]}

Introduction Post-hoc Optimization Comparison Summary

PhO Heuristic

Definition (Post-hoc Optimization Heuristic)

The post-hoc optimization heuristic hPhO{α1,...,αn} for abstractions
α1, . . . , αn is the objective value of the following linear program:

Minimize
∑

[o]∈O/∼

X[o] subject to

∑
[o]∈O/∼:o relevant for α

X[o] ≥ hα(s) for all α ∈ {α1, . . . , αn}

X[o] ≥ 0 for all [o] ∈ O/∼,

where o ∼ o ′ iff o and o ′ are relevant for exactly the same
abstractions in α1, . . . , αn.

Introduction Post-hoc Optimization Comparison Summary

PhO Heuristic

hPhO

1 Precompute all abstraction heuristics hα1 , . . . , hαn .

2 Create LP for initial state s0.
3 For each new state s:

Look up hα(s) for all α ∈ {α1, . . . , αn}.
Adjust LP by replacing bounds with the hα(s) values.

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization Heuristic: Admissibility

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Proof.

Let Π be a planning task and {α1, . . . , αn} be a set of abstractions.
We show that there is a feasible variable assignment with objective
value equal to the cost of an optimal plan.
Let π be an optimal plan for state s and let costπ(O

′) be the cost
incurred by operators from O ′ ⊆ O in π.

Setting each X[o] to costπ([o]) is a feasible variable assignment:
Constraints X[o] ≥ 0 are satisfied. . . .

Introduction Post-hoc Optimization Comparison Summary

Post-hoc Optimization Heuristic: Admissibility

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Proof (continued).

For each α ∈ {α1, . . . , αn}, π is a solution in the abstract
transition system and the sum in the corresponding constraint
equals the cost of the state-changing abstract state transitions
(i.e.. not accounting for self-loops). As hα(s) corresponds to the
cost of an optimal solution in the abstraction, the inequality holds.

For this assignment, the objective function has value h∗(s)
(cost of π), so the objective value of the LP is admissible.

Introduction Post-hoc Optimization Comparison Summary

Comparison

Introduction Post-hoc Optimization Comparison Summary

Combining Estimates from Abstraction Heuristics

Post-Hoc optimization combines multiple admissible heuristic
estimates into one.

We have already heard of two other such approaches for
abstraction heuristics,

the canonical heuristic (for PDBs), and
optimal cost partitioning (not covered in detail).

How does PhO compare to these?

Introduction Post-hoc Optimization Comparison Summary

Combining Estimates from Abstraction Heuristics

Post-Hoc optimization combines multiple admissible heuristic
estimates into one.

We have already heard of two other such approaches for
abstraction heuristics,

the canonical heuristic (for PDBs), and
optimal cost partitioning (not covered in detail).

How does PhO compare to these?

Introduction Post-hoc Optimization Comparison Summary

Combining Estimates from Abstraction Heuristics

Post-Hoc optimization combines multiple admissible heuristic
estimates into one.

We have already heard of two other such approaches for
abstraction heuristics,

the canonical heuristic (for PDBs), and
optimal cost partitioning (not covered in detail).

How does PhO compare to these?

Introduction Post-hoc Optimization Comparison Summary

Reminder: The Canonical Heuristic Function

If for a set of patterns no operator affects more than one pattern,
the sum of the heuristic estimates is admissible.

Definition (Canonical Heuristic Function)

Let C be a pattern collection for an FDR planning task.

The canonical heuristic hC for pattern collection C is defined as

hC(s) = max
D∈cliques(C)

∑
P∈D

hP(s),

where cliques(C) is the set of all maximal cliques
in the compatibility graph for C.

For a given pattern collection, the canonical heuristic is the best
possible admissible heuristic not using cost partitioning.

Introduction Post-hoc Optimization Comparison Summary

What about Optimal Cost Partitioning for Abstractions?

Optimal cost partitioning for abstractions. . .

. . . uses a state-specific LP to find the best possible cost
partitioning, and sums up the heuristic estimates.

. . . dominates the canonical heuristic, i.e. for the same pattern
collection, it never gives lower estimates than hC .

. . . is very expensive to compute
(recomputing all abstract goal distances in every state).

Introduction Post-hoc Optimization Comparison Summary

PhO: Linear Program

For set of abstractions {α1, . . . , αn}:

Variables

X[o] for all equivalence classes [o] ∈ O/∼

Objective

Minimize
∑

[o]∈O/∼ X[o]

Subject to∑
[o]∈O/∼:o relevant for α

X[o] ≥ hα(s) for all α ∈ {α1, . . . , αn}

X[o] ≥ 0 for all [o] ∈ O/∼

We compute a state-specific cost partitioning that can only scale
the operator costs within each heuristic by a factor Yi .

Introduction Post-hoc Optimization Comparison Summary

PhO: Dual Linear Program

For set of abstractions {α1, . . . , αn}:

Variables

Yα for each abstraction α ∈ {α1, . . . , αn}

Objective

Maximize
∑

α∈{α1,...,αn} h
α(s)Yα

Subject to∑
α∈{α1,...,αn}:o relevant for α

Yα ≤ 1 for all [o] ∈ O/∼

Yα ≥ 0 for all α ∈ {α1, . . . , αn}

We compute a state-specific cost partitioning that can only scale
the operator costs within each heuristic by a factor 0 ≤ Yα ≤ 1.

Introduction Post-hoc Optimization Comparison Summary

PhO: Dual Linear Program

For set of abstractions {α1, . . . , αn}:

Variables

Yα for each abstraction α ∈ {α1, . . . , αn}

Objective

Maximize
∑

α∈{α1,...,αn} h
α(s)Yα

Subject to∑
α∈{α1,...,αn}:o relevant for α

Yα ≤ 1 for all [o] ∈ O/∼

Yα ≥ 0 for all α ∈ {α1, . . . , αn}

We compute a state-specific cost partitioning that can only scale
the operator costs within each heuristic by a factor 0 ≤ Yα ≤ 1.

Introduction Post-hoc Optimization Comparison Summary

Relation to Optimal Cost Partitioning

Theorem

Optimal cost partitioning dominates post-hoc optimization.

Proof Sketch.

Consider a feasible assignment ⟨Yα1 , . . . ,Yαn⟩ for the variables of
the dual LP for PhO.

Its objective value is equivalent to the cost-partitioning heuristic
for the same abstractions with cost partitioning
⟨Yα1cost, . . . ,Yαncost⟩.

Introduction Post-hoc Optimization Comparison Summary

Relation to Canonical Heuristic

Theorem

Consider the dual D of the LP solved by the post-hoc optimization
heuristic in state s for a given set of abstractions. If we restrict the
variables in D to integers, the objective value is the canonical
heuristic value hC(s).

Corollary

The post-hoc optimization heuristic dominates the canonical
heuristic for the same set of abstractions.

Introduction Post-hoc Optimization Comparison Summary

Relation to Canonical Heuristic

Theorem

Consider the dual D of the LP solved by the post-hoc optimization
heuristic in state s for a given set of abstractions. If we restrict the
variables in D to integers, the objective value is the canonical
heuristic value hC(s).

Corollary

The post-hoc optimization heuristic dominates the canonical
heuristic for the same set of abstractions.

Introduction Post-hoc Optimization Comparison Summary

hPhO vs hC

For the canonical heuristic, we need to find all maximal
cliques, which is an NP-hard problem.

The post-hoc optimization heuristic dominates the canonical
heuristic and can be computed in polynomial time.

The post-hoc optimization heuristic solves an LP in each
state.

With post-hoc optimization, a large number of small patterns
works well.

Introduction Post-hoc Optimization Comparison Summary

Summary

Introduction Post-hoc Optimization Comparison Summary

Summary

Post-hoc optimization heuristic constraints express
admissibility of heuristics

exploits (ir-)relevance of operators for heuristics

explores the middle ground between canonical heuristic and
optimal cost partitioning.

For the same set of abstractions, the post-hoc optimization
heuristic dominates the canonical heuristic.

The computation can be done in polynomial time.

	Introduction
	

	Post-hoc Optimization
	

	Comparison
	

	Summary
	

