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G9. Post-hoc Optimization Introduction

Example Task (1)

Example (Example Task)

SAS+ task Π = ⟨V , I ,O, γ⟩ with
▶ V = {A,B,C} with dom(v) = {0, 1, 2, 3, 4} for all v ∈ V

▶ I = {A 7→ 0,B 7→ 0,C 7→ 0}
▶ O = {incvx | v ∈ V , x ∈ {0, 1, 2}} ∪ {jumpv | v ∈ V }

▶ incvx = ⟨v = x , v := x + 1, 1⟩
▶ jumpv = ⟨

∧
v ′∈V :v ′ ̸=v v

′ = 4, v := 3, 1⟩
▶ γ = A = 3 ∧ B = 3 ∧ C = 3

▶ Each optimal plan consists of three increment operators for
each variable ⇝ h∗(I ) = 9

▶ Each operator affects only one variable.
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Example Task (2)

▶ In projections on single variables we can reach the goal with a
jump operator: h{A}(I ) = h{B}(I ) = h{C}(I ) = 1.

▶ In projections on more variables, we need for each variable
three applications of increment operators to reach the
abstract goal from the abstract initial state:
h{A,B}(I ) = h{A,C}(I ) = h{B,C}(I ) = 6

Example (Canonical Heuristic)

C = {{A}, {B}, {C}, {A,B}, {A,C}, {B,C}}

hC(s) = max{h{A}(s) + h{B}(s) + h{C}(s), h{A}(s) + h{B,C}(s),

h{B}(s) + h{A,C}(s), h{C}(s) + h{A,B}(s)}

hC(I ) = 7
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Post-hoc Optimization Heuristic: Idea

Consider the example task:

▶ type-v operator: operator modifying variable v

▶ h{A,B} = 6
⇒ in any plan operators of type A or B incur at least cost 6.

▶ h{A,C} = 6
⇒ in any plan operators of type A or C incur at least cost 6.

▶ h{B,C} = 6
⇒ in any plan operators of type B or C incur at least cost 6.

▶ ⇒ any plan has at least cost ???.

▶ (let’s use linear programming. . . )

▶ ⇒ any plan has at least cost 9.

Can we generalize this kind of reasoning?
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G9.2 Post-hoc Optimization
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Post-hoc Optimization

The heuristic that generalizes this kind of reasoning
is the Post-hoc Optimization Heuristic (PhO)

▶ can be computed for any kind of heuristic . . .

▶ . . . as long as we are able to determine relevance of operators

▶ if in doubt, it’s always safe to assume
an operator is relevant for a heuristic

▶ but for PhO to work well, it’s important that the set of
relevant operators is as small as possible
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Operator Relevance in Abstractions

Definition (Reminder: Affecting Transition Labels)

Let T be a transition system, and let ℓ be one of its labels.

We say that ℓ affects T if T has a transition s
ℓ−→ t with s ̸= t.

Definition (Operator Relevance in Abstractions)

An operator o is relevant for an abstraction α if o affects T α.

We can efficiently determine operator relevance for abstractions.
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Linear Program (1)

For a given set of abstractions {α1, . . . , αn}, we construct
a linear program:

▶ variable Xo for each operator o ∈ O

▶ intuitively, Xo is cost incurred by operator o

▶ abstraction heuristics are admissible∑
o∈O

Xo ≥ hα(s) for α ∈ {α1, . . . , αn}

▶ can tighten these constraints to∑
o∈O:o relevant for α

Xo ≥ hα(s) for α ∈ {α1, . . . , αn}
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Linear Program (2)

For set of abstractions {α1, . . . , αn}:

Variables
Non-negative variables Xo for all operators o ∈ O

Objective

Minimize
∑

o∈O Xo

Subject to∑
o∈O:o relevant for α

Xo ≥ hα(s) for α ∈ {α1, . . . , αn}

Xo ≥ 0 for all o ∈ O
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Simplifying the LP

▶ Reduce the size of the LP by aggregating variables
which always occur together in constraints.

▶ Happens if several operators are relevant
for exactly the same heuristics.

▶ Partitioning O/∼ induced by this equivalence relation

▶ One variable X[o] for each [o] ∈ O/∼
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Example

Example
▶ only operators o1, o2, o3 and o4 are relevant for h1

and h1(s0) = 11

▶ only operators o3, o4, o5 and o6 are relevant for h2
and h2(s0) = 11

▶ only operators o1, o2 and o6 are relevant for h3
and h3(s0) = 8

Which operators are relevant for exactly the same heuristics?
What is the resulting partitioning?

Answer: o1 ∼ o2 and o3 ∼ o4

Answer:

⇒ O/∼ = {[o1], [o3], [o5], [o6]}
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Simplifying the LP: Example

LP before aggregation

Variables
Non-negative variable X1, . . . ,X6

for operators o1, . . . , o6

Minimize X1 + X2 + X3 + X4 + X5 + X6 subject to

X1 + X2 + X3 + X4

+ X5 + X6

≥ 11

X1 + X2 +

X3 + X4 + X5 + X6 ≥ 11

X1 + X2

+ X3 + X4 + X5

+ X6 ≥ 8

Xi ≥ 0 for i ∈ {1, . . . , 6}

M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 13, 2023 15 / 31

G9. Post-hoc Optimization Post-hoc Optimization

Simplifying the LP: Example

LP after aggregation

Variables
Non-negative variable X[1],X[3],X[5],X[6]

for equivalence classes [o1], [o3], [o5], [o6]

Minimize X[1] + X[3] + X[5] + X[6] subject to

X[1] + X[3]

+ X[5] + X[6]

≥ 11

X[1] +

X[3] + X[5] + X[6] ≥ 11

X[1] +

+ X[3] + X[5]

+ X[6] ≥ 8

Xi ≥ 0 for i ∈ {[1], [3], [5], [6]}
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PhO Heuristic

Definition (Post-hoc Optimization Heuristic)

The post-hoc optimization heuristic hPhO{α1,...,αn} for abstractions
α1, . . . , αn is the objective value of the following linear program:

Minimize
∑

[o]∈O/∼

X[o] subject to

∑
[o]∈O/∼:o relevant for α

X[o] ≥ hα(s) for all α ∈ {α1, . . . , αn}

X[o] ≥ 0 for all [o] ∈ O/∼,

where o ∼ o ′ iff o and o ′ are relevant for exactly the same
abstractions in α1, . . . , αn.
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PhO Heuristic

hPhO

1 Precompute all abstraction heuristics hα1 , . . . , hαn .

2 Create LP for initial state s0.
3 For each new state s:

▶ Look up hα(s) for all α ∈ {α1, . . . , αn}.
▶ Adjust LP by replacing bounds with the hα(s) values.
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Post-hoc Optimization Heuristic: Admissibility

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Proof.

Let Π be a planning task and {α1, . . . , αn} be a set of abstractions.
We show that there is a feasible variable assignment with objective
value equal to the cost of an optimal plan.
Let π be an optimal plan for state s and let costπ(O

′) be the cost
incurred by operators from O ′ ⊆ O in π.

Setting each X[o] to costπ([o]) is a feasible variable assignment:
Constraints X[o] ≥ 0 are satisfied. . . .
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Post-hoc Optimization Heuristic: Admissibility

Theorem (Admissibility)

The post-hoc optimization heuristic is admissible.

Proof (continued).

For each α ∈ {α1, . . . , αn}, π is a solution in the abstract
transition system and the sum in the corresponding constraint
equals the cost of the state-changing abstract state transitions
(i.e.. not accounting for self-loops). As hα(s) corresponds to the
cost of an optimal solution in the abstraction, the inequality holds.

For this assignment, the objective function has value h∗(s)
(cost of π), so the objective value of the LP is admissible.
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G9.3 Comparison
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G9. Post-hoc Optimization Comparison

Combining Estimates from Abstraction Heuristics

▶ Post-Hoc optimization combines multiple admissible heuristic
estimates into one.

▶ We have already heard of two other such approaches for
abstraction heuristics,
▶ the canonical heuristic (for PDBs), and
▶ optimal cost partitioning (not covered in detail).

▶ How does PhO compare to these?
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Reminder: The Canonical Heuristic Function

If for a set of patterns no operator affects more than one pattern,
the sum of the heuristic estimates is admissible.

Definition (Canonical Heuristic Function)

Let C be a pattern collection for an FDR planning task.

The canonical heuristic hC for pattern collection C is defined as

hC(s) = max
D∈cliques(C)

∑
P∈D

hP(s),

where cliques(C) is the set of all maximal cliques
in the compatibility graph for C.

For a given pattern collection, the canonical heuristic is the best
possible admissible heuristic not using cost partitioning.
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What about Optimal Cost Partitioning for Abstractions?

Optimal cost partitioning for abstractions. . .

▶ . . . uses a state-specific LP to find the best possible cost
partitioning, and sums up the heuristic estimates.

▶ . . . dominates the canonical heuristic, i.e. for the same pattern
collection, it never gives lower estimates than hC .

▶ . . . is very expensive to compute
(recomputing all abstract goal distances in every state).
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PhO: Linear Program

For set of abstractions {α1, . . . , αn}:

Variables

X[o] for all equivalence classes [o] ∈ O/∼

Objective

Minimize
∑

[o]∈O/∼ X[o]

Subject to∑
[o]∈O/∼:o relevant for α

X[o] ≥ hα(s) for all α ∈ {α1, . . . , αn}

X[o] ≥ 0 for all [o] ∈ O/∼

We compute a state-specific cost partitioning that can only scale
the operator costs within each heuristic by a factor Yi .
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PhO: Dual Linear Program

For set of abstractions {α1, . . . , αn}:

Variables

Yα for each abstraction α ∈ {α1, . . . , αn}

Objective

Maximize
∑

α∈{α1,...,αn} h
α(s)Yα

Subject to∑
α∈{α1,...,αn}:o relevant for α

Yα ≤ 1 for all [o] ∈ O/∼

Yα ≥ 0 for all α ∈ {α1, . . . , αn}

We compute a state-specific cost partitioning that can only scale
the operator costs within each heuristic by a factor 0 ≤ Yα ≤ 1.
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Relation to Optimal Cost Partitioning

Theorem
Optimal cost partitioning dominates post-hoc optimization.

Proof Sketch.

Consider a feasible assignment ⟨Yα1 , . . . ,Yαn⟩ for the variables of
the dual LP for PhO.

Its objective value is equivalent to the cost-partitioning heuristic
for the same abstractions with cost partitioning
⟨Yα1cost, . . . ,Yαncost⟩.
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Relation to Canonical Heuristic

Theorem
Consider the dual D of the LP solved by the post-hoc optimization
heuristic in state s for a given set of abstractions. If we restrict the
variables in D to integers, the objective value is the canonical
heuristic value hC(s).

Corollary

The post-hoc optimization heuristic dominates the canonical
heuristic for the same set of abstractions.
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hPhO vs hC

▶ For the canonical heuristic, we need to find all maximal
cliques, which is an NP-hard problem.

▶ The post-hoc optimization heuristic dominates the canonical
heuristic and can be computed in polynomial time.

▶ The post-hoc optimization heuristic solves an LP in each
state.

▶ With post-hoc optimization, a large number of small patterns
works well.
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G9.4 Summary
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G9. Post-hoc Optimization Summary

Summary

▶ Post-hoc optimization heuristic constraints express
admissibility of heuristics

▶ exploits (ir-)relevance of operators for heuristics

▶ explores the middle ground between canonical heuristic and
optimal cost partitioning.

▶ For the same set of abstractions, the post-hoc optimization
heuristic dominates the canonical heuristic.

▶ The computation can be done in polynomial time.
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