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Motivation

m This goes on beyond Computer Science
m Active research on IPs and LPs in

m Operation Research
m Mathematics

Many application areas, for instance:
m Manufacturing

Agriculture

Mining

Logistics

Planning

As an application, we treat LPs / IPs as a blackbox

We just look at the fundamentals

However, even on the application side there is much more
(e.g., modelling tricks or solver parameters to speed up
computation)
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Motivation

Example (Optimization Problem)

Consider the following scenario:
m A factory produces two products A and B
m Selling one (unit of) B yields 5 times the profit of selling one A

m A client places the unusual order to “buy anything that can
be produced on that day as long as two plus twice the units of
A is not smaller than the number of B"

More than 12 products in total cannot be produced per day

There is only material for 6 units of A
(there is enough material to produce any amount of B)

How many units of A and B does the client receive
if the factory owner aims to maximize her profit?
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Integer Program: Example

Let X4 and Xg be the (integer) number of produced A and B

Example (Optimization Problem as Integer Program)

Xa>0, Xg>0

.

Example (Optimization Problem)

.
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Integer Program: Example

Let X4 and Xg be the (integer) number of produced A and B

Example (Optimization Problem as Integer Program)

maximize X+ 5Xg  subject to

Xa>0, Xg=>0

.

Example (Optimization Problem)

m ‘“one B yields 5 times the profit of one A”

m “the factory owner aims to maximize her profit”

.
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Integer Program: Example

Let X4 and Xg be the (integer) number of produced A and B

Example (Optimization Problem as Integer Program)

maximize X+ 5Xg  subject to

24+2Xa > Xp

Xa>0, Xg=>0

.

Example (Optimization Problem)

m “two plus twice the units of A may not be

smaller than the number of B”

.
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Integer Program: Example

Let X4 and Xg be the (integer) number of produced A and B

Example (Optimization Problem as Integer Program)

maximize X+ 5Xg  subject to

24+2Xa > Xp
Xa+ Xg <12

Xa>0, Xg=>0

.

Example (Optimization Problem)

m “More than 12 products in total cannot be produced per day”

.
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Integer Program: Example

Let X4 and Xg be the (integer) number of produced A and B

Example (Optimization Problem as Integer Program)

maximize X+ 5Xg  subject to

24+2Xa > Xp
Xa+ Xg <12
Xa <6

Xa>0, Xg=>0

.

Example (Optimization Problem)

m "There is only material for 6 units of A"

.
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Integer Program: Example

Let X4 and Xg be the (integer) number of produced A and B

Example (Optimization Problem as Integer Program)

maximize X+ 5Xg  subject to

2+2X4 > Xp
Xa+ Xg <12
XA <6

Xa>0, Xg>0

~> unique optimal solution:
produce 4 A (X, = 4) and 8 B (X = 8) for a profit of 44
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Same Program as Input for the CPLEX Solver

Maximize

obj: X_A + 5 X_B
Subject To

cl: -2 X_ A+ XB<=2
c2: X_A + X_B <= 12
Bounds

0<=X_AK=6

0 <= X_B

General

X_A X_B

End

— Demo
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Integer Program Example: Visualization

XB
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Integer Program Example: Visualization

XB
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Integer Programs

Integer Program

An integer program (IP) consists of:

m a finite set of integer-valued variables V'

m a finite set of linear inequalities (constraints) over V/

m an objective function, which is a linear combination of V/
|

which should be minimized or maximized.
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Terminology

m An integer assignment to all variables in V is feasible if it
satisfies the constraints.

m An integer program is feasible if there is such a feasible
assignment. Otherwise it is infeasible.

m A feasible maximum (resp. minimum) problem is
unbounded if the objective function can assume arbitrarily
large positive (resp. negative) values at feasible assignments.
Otherwise it is bounded.

m The objective value of a bounded feasible maximum
(resp. minimum) problem is the maximum (resp. minimum)
value of the objective function with a feasible assignment.
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Another Example

minimize  3X,, +4X,, +5X,, subject to

Xop 21
Xoy + X0, 21
Xop + Xy 21
Xop + Xoy > 1

X01 2 01 X02 2 Ol XO3 2 Ov XO4 Z 0

What example from a recent chapter does this IP encode?
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Another Example

minimize  3X,, +4X,, +5X,, subject to

Xop 21
Xoy + X0, 21
Xop + Xy 21
Xop + Xoy > 1

X01 2 01 X02 2 Ol XO3 2 Ov XO4 Z 0

What example from a recent chapter does this IP encode?

~> the minimum hitting set from Chapter G4
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Complexity of Solving Integer Programs

m As an IP can compute an MHS, solving an IP
must be at least as complex as computing an MHS

m Reminder: MHS is a “classical” NP-complete problem
m Good news: Solving an IP is not harder

~» Finding solutions for IPs is NP-complete.
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Complexity of Solving Integer Programs

m As an IP can compute an MHS, solving an IP
must be at least as complex as computing an MHS

m Reminder: MHS is a “classical” NP-complete problem
m Good news: Solving an IP is not harder
~» Finding solutions for IPs is NP-complete.

Removing the requirement that solutions must be
integer-valued leads to a simpler problem
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Linear Programs

Linear Program

A linear program (LP) consists of:
m a finite set of real-valued variables V/
m a finite set of linear inequalities (constraints) over V/
m an objective function, which is a linear combination of V
[

which should be minimized or maximized.

We use the introduced IP terminology also for LPs.

Mixed IPs (MIPs) are something between IPs and LPs:
some variables are integer-valued, some are real-valued.
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Linear Program: Example

Let X4 and Xg be the (real-valued) number of produced A and B

Example (Optimization Problem as Program)

maximize Xy +5Xg  subject to

2+2X, > Xg
Xa+Xp <12
Xa<6

Xa2>20, Xg=>0
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Linear Program: Example

Let X4 and Xg be the (real-valued) number of produced A and B

Example (Optimization Problem as Program)

maximize Xy +5Xg  subject to

2+2X, > Xg
Xa+Xp <12
Xa<6

Xa2>20, Xg=>0

~+ unique optimal solution:
Xa = 3% and Xg = 8% with objective value 46%
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Same Program as Input for the CPLEX Solver

Maximize
obj: X_A + 5 X_B
Subject To
cl: -2 X_A + X _B<=2
c2: X_A + X_B <= 12
Bounds
0<=X_AK=6
0 <= X_B
End

— Demo
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Solving Linear Programs

m Observation:
Here, LP solution is an upper bound for the corresponding IP.
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Solving Linear Programs

m Observation:

Here, LP solution is an upper bound for the corresponding IP.
m Complexity:

LP solving is a polynomial-time problem.
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Solving Linear Programs

m Observation:

Here, LP solution is an upper bound for the corresponding IP.
m Complexity:

LP solving is a polynomial-time problem.
m Common idea:

Approximate IP solution with corresponding LP
(LP relaxation).
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LP Relaxation

Theorem (LP Relaxation)

The LP relaxation of an integer program is the problem that arises
by removing the requirement that variables are integer-valued.

For a maximization (resp. minimization) problem, the objective
value of the LP relaxation is an upper (resp. lower) bound on the
value of the IP.

.

Proof idea.

Every feasible assignment for the IP is also feasible for the LP. [
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LP Relaxation of MHS heuristic

Example (Minimum Hitting Set)
minimize  3X,, +4X,, +5X,, subject to

X, > 1
Xoy + Xop > 1

~> optimal solution of LP relaxation:
Xo, = Land X, = X,, = X, = 0.5 with objective value 6

4
~+ LP relaxation of MHS heuristic is admissible

and can be computed in polynomial time
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Normal Forms and Duality
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Standard Maximum Problem

Normal form for maximization problems:

Definition (Standard Maximum Problem)

Find values for xi, ..., x,, to maximize
C1X1 + CXx2 + - -+ + CpXp
subject to the constraints

ayixt +apxe + -+ awnxy, < by

ap1X1 + axnxo + -+ + apx, < by

amiX1 + amex2 + -+ - + amnXn < by

and x; > 0,x >0,...,x, > 0.
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Standard Maximum Problem: Matrix and Vectors

A standard maximum problem is often given by
m an m-vector b = (by,..., by) " (bounds),
® an n-vector ¢ = (c1,...,¢,) " (objective coefficients),

m and an m X n matrix

a1l a2 ain
ary a2 ... ap ..
A= . o .| (coefficients)
dml dm2 --- dmn
m Then the problem is to find a vector x = (x1,...,x,)" to

maximize ¢’ x subject to Ax < b and x > 0.
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Standard Minimum Problem

m there is also a standard minimum problem
m it's form is identical to the standard maximum problem,
except that
m the aim is to minimize the objective function
m subject to Ax > b
m All linear programs can efficiently be converted into a
standard maximum/minimum problem.
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Every LP has an alternative view (its dual LP).

Primal Dual
maximization (or minimization) | minimization (or maximization)
objective coefficients bounds

bounds
bounded variable
<-constraint
free variable
=-constraint

dual of dual: original LP

objective coefficients
>-constraint
bounded variable
=-constraint
free variable
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Dual Problem

Definition (Dual Problem)

The dual of the standard maximum problem

maximize ¢’ x subject to Ax < b and x>0

is the standard minimum problem

minimize b"y subject to ATy > candy >0
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Dual Problem: Example

Example (Dual of the Optimization Problem)

maximize Xy +5Xg  subject to

—2Xa+ Xg <2
Xa+Xg <12
Xa <6
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Dual Problem: Example

Example (Dual of the Optimization Problem)
maximize Xy +5Xg  subject to

[Yl] —2Xa+ Xg <2
[Y2] Xa+Xg <12
[Y3] Xa <6

Xa20, Xg>0 )
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Dual Problem: Example

Example (Dual of the Optimization Problem)
minimize 2Y7 +12Y>+4+6Y3 subject to

[Xal =20 Yo gl
[Xs] Yi+Y>2>5

Y120, Y>>0 Y3>0
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Duality Theorem

Theorem (Duality Theorem)

If a standard linear program is bounded feasible, then so is its dual,
and their objective values are equal.

(Proof omitted.)

The dual provides a different perspective on a problem.
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Summary

m Linear (and integer) programs consist of an objective function
that should be maximized or minimized subject to a set of
given linear constraints.

m Finding solutions for integer programs is NP-complete.

m LP solving is a polynomial time problem.

m The dual of a maximization LP is a minimization LP
and vice versa.

m The dual of a bounded feasible LP has the
same objective value.
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Further Reading

The slides in this chapter are based on the following
excellent tutorial on LP solving:

@ Thomas S. Ferguson.
Linear Programming — A Concise Introduction.
UCLA, unpublished document available online.
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