Planning and Optimization
G6. Linear \& Integer Programming

Malte Helmert and Gabriele Röger
Universität Basel
December 6, 2023
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Planning and Optimization
December 6, 2023 - G6. Linear \& Integer Programming

G6.1 Integer Programs

G6.2 Linear Programs

G6.3 Normal Forms and Duality

G6.4 Summary
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization
December 6, 2023 2/35

Not Content of this Course (Relevance)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization

G6.1 Integer Programs

M. Helmert, G. Röger (Universität Basel)
Planning and Optimization

December 6, 2023 6/35

G6. Linear \& Integer Programming Motivation			
Example (Optimization Problem) Consider the following scenario: A factory produces two products A and B - Selling one (unit of) B yields 5 times the profit of selling one A - A client places the unusual order to "buy anything that can be produced on that day as long as two plus twice the units of A is not smaller than the number of B" - More than 12 products in total cannot be produced per day - There is only material for 6 units of A (there is enough material to produce any amount of B)			
How many units of A and B does the client receive if the factory owner aims to maximize her profit?			
M. Helmert, G. Röger (Universität Basel)	Planning and Optimization	December 6, 2023	$8 / 35$

Let X_{A} and X_{B} be the (integer) number of produced A and B

```
File ip.lp
Maximize
    obj: X_A + 5 X_B
Subject To
    c1: -2 X_A + X_B <= 2
    c2: \(X_{-} A+X_{-} B<=12\)
```

Bounds
$0<=X_{-} A<=6$
$0<=X_{-} B$

General

X_A X_B
End
\rightarrow Demo

| M. Helmert, G. Röger (Universität Basel) | Planning and Optimization | December 6, 2023 10/35 |
| :--- | :--- | :--- | :--- |

66. Linear \& Integer Programming

Integer Program Example: Visualization
Integer Programs

Integer Program

An integer program (IP) consists of:

- a finite set of integer-valued variables V
- a finite set of linear inequalities (constraints) over V
- an objective function, which is a linear combination of V
- which should be minimized or maximized.
- An integer assignment to all variables in V is feasible if it satisfies the constraints.
- An integer program is feasible if there is such a feasible assignment. Otherwise it is infeasible.
- A feasible maximum (resp. minimum) problem is unbounded if the objective function can assume arbitrarily large positive (resp. negative) values at feasible assignments. Otherwise it is bounded.
- The objective value of a bounded feasible maximum (resp. minimum) problem is the maximum (resp. minimum) value of the objective function with a feasible assignment.
- As an IP can compute an MHS, solving an IP must be at least as complex as computing an MHS
- Reminder: MHS is a "classical" NP-complete problem
- Good news: Solving an IP is not harder
\rightsquigarrow Finding solutions for IPs is NP-complete.
Removing the requirement that solutions must be integer-valued leads to a simpler problem

Integer Programs

Example

$$
\begin{array}{cc}
\operatorname{minimize} & 3 X_{o_{1}}+4 X_{o_{2}}+5 X_{o_{3}} \quad \text { subject to } \\
X_{o_{4}} \geq 1 \\
X_{o_{1}}+X_{o_{2}} \geq 1 \\
X_{o_{1}}+X_{o_{3}} \geq 1 \\
X_{o_{2}}+X_{o_{3}} \geq 1 \\
X_{o_{1}} \geq 0, \quad X_{o_{2}} \geq 0, \quad X_{o_{3}} \geq 0, \quad X_{o_{4}} \geq 0
\end{array}
$$

What example from a recent chapter does this IP encode?
\rightsquigarrow the minimum hitting set from Chapter G4

Linear Program

A linear program (LP) consists of:

- a finite set of real-valued variables V
- a finite set of linear inequalities (constraints) over V
- an objective function, which is a linear combination of V
- which should be minimized or maximized.

We use the introduced IP terminology also for LPs.
Mixed IPs (MIPs) are something between IPs and LPs: some variables are integer-valued, some are real-valued.
G6. Linear \& Integer Programming

Same Program as Input for the CPLEX Solver

```
File lp.lp
Maximize
    obj: X_A + 5 X_B
Subject To
    c1: -2 X_A + X_B <= 2
    c2: X_A + X_B <= 12
Bounds
    0<= X_A <= 6
    0<= X_B
End
```

Let X_{A} and X_{B} be the (real-valued) number of produced A and B
Example (Optimization Problem as Linear Program)

$$
\text { maximize } \quad X_{A}+5 X_{B} \quad \text { subject to }
$$

rogramming

maximize $\quad X_{A}+5 X_{B} \quad$ subject to
$2+2 X_{A} \geq X_{B}$
$X_{A}+X_{B} \leq 12$
$X_{A} \leq 6$
$X_{A} \geq 0, \quad X_{B} \geq 0$

$$
2+2 X_{A} \geq X_{B}
$$

$$
X_{A}+X_{B} \leq 12
$$

$$
X_{A} \leq 6
$$

$$
X_{A} \geq 0, \quad X_{B} \geq 0
$$

\rightsquigarrow unique optimal solution:

$$
X_{A}=3 \frac{1}{3} \text { and } X_{B}=8 \frac{2}{3} \text { with objective value } 46 \frac{2}{3}
$$

Linear Program Example: Visualization

- Observation:

Here, LP solution is an upper bound for the corresponding IP.

- Complexity:

LP solving is a polynomial-time problem.

- Common idea

Approximate IP solution with corresponding LP
(LP relaxation).

Normal Forms and Duality
\rightsquigarrow optimal solution of LP relaxation:
$X_{O_{4}}=1$ and $X_{o_{1}}=X_{O_{2}}=X_{o_{3}}=0.5$ with objective value 6
\rightsquigarrow LP relaxation of MHS heuristic is admissible and can be computed in polynomial time

LP Relaxation of MHS heuristic

Example (Minimum Hitting Set)
minimize $3 X_{o_{1}}+4 X_{o_{2}}+5 X_{o_{3}} \quad$ subject to
$X_{04} \geq 1$
$X_{o_{1}}+X_{o_{2}} \geq 1$
$X_{o_{1}}+X_{o_{3}} \geq 1$
$X_{O_{2}}+X_{O_{3}} \geq 1$

$$
X_{o_{1}} \geq 0, \quad X_{o_{2}} \geq 0, \quad X_{o_{3}} \geq 0, \quad X_{o_{4}} \geq 0
$$

Theorem (LP Relaxation)
The LP relaxation of an integer program is the problem that arises by removing the requirement that variables are integer-valued.

For a maximization (resp. minimization) problem, the objective value of the LP relaxation is an upper (resp. lower) bound on the value of the IP.

Proof idea.
Every feasible assignment for the IP is also feasible for the LP.

6. Linear \& Integer Programming

Normal form for maximization problems:
Definition (Standard Maximum Problem)
Find values for x_{1}, \ldots, x_{n}, to maximize

$$
c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

subject to the constraints

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \leq b_{2} \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \leq b_{m}
\end{aligned}
$$

and $x_{1} \geq 0, x_{2} \geq 0, \ldots, x_{n} \geq 0$.

Standard Minimum Problem

- there is also a standard minimum problem
- it's form is identical to the standard maximum problem, except that
- the aim is to minimize the objective function
- subject to $\mathbf{A x} \geq \mathbf{b}$
- All linear programs can efficiently be converted into a standard maximum/minimum problem.

A standard maximum problem is often given by

- an m-vector $\mathbf{b}=\left\langle b_{1}, \ldots, b_{m}\right\rangle^{T}$ (bounds),
- an n-vector $\mathbf{c}=\left\langle c_{1}, \ldots, c_{n}\right\rangle^{T}$ (objective coefficients),
- and an $m \times n$ matrix

$$
\mathbf{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right) \text { (coefficients) }
$$

- Then the problem is to find a vector $\mathrm{x}=\left\langle x_{1}, \ldots, x_{n}\right\rangle^{T}$ to maximize $\mathbf{c}^{T} x$ subject to $\mathbf{A x} \leq \mathbf{b}$ and $\mathrm{x} \geq \mathbf{0}$.

Some LP Theory: Duality

Every LP has an alternative view (its dual LP).

Primal	Dual
maximization (or minimization)	minimization (or maximization)
objective coefficients	bounds
bounds	objective coefficients
bounded variable	\geq-constraint
$\leq-$ constraint	bounded variable
free variable	$=$-constraint
$=$-constraint	free variable

dual of dual: original LP
M. Helmert, G. Röger (Universität Basel)

Dual Problem: Example
Normal Forms and Duality

Definition (Dual Problem)

The dual of the standard maximum problem
maximize $\mathbf{c}^{T} \mathrm{x}$ subject to $\mathbf{A x} \leq \mathbf{b}$ and $\mathrm{x} \geq \mathbf{0}$
is the standard minimum problem

$$
\text { minimize } \mathbf{b}^{T} \mathbf{y} \text { subject to } \mathbf{A}^{T} \mathbf{y} \geq \mathbf{c} \text { and } \mathrm{y} \geq \mathbf{0}
$$

Dual Problem: Example

Example (Dual of the Optimization Problem)
maximize $\quad X_{A}+5 X_{B} \quad$ subject to
[Y_{1}]

$$
\begin{aligned}
-2 X_{A}+X_{B} & \leq 2 \\
X_{A}+X_{B} & \leq 12 \\
X_{A} & \leq 6
\end{aligned}
$$

$$
X_{A} \geq 0, \quad X_{B} \geq 0
$$

M. Helmert, G. Röger (Universität Basel)

Duality Theorem

Theorem (Duality Theorem)
If a standard linear program is bounded feasible, then so is its dual, and their objective values are equal.

(Proof omitted.)

The dual provides a different perspective on a problem.

G6.4 Summary

- Linear (and integer) programs consist of an objective function that should be maximized or minimized subject to a set of given linear constraints.
- Finding solutions for integer programs is NP-complete.
- LP solving is a polynomial time problem.
- The dual of a maximization LP is a minimization LP and vice versa
- The dual of a bounded feasible LP has the same objective value.

G6. Linear \& Integer Programming

\qquad
Further Reading
ry
\square

The slides in this chapter are based on the following excellent tutorial on LP solving:

Thomas S. Ferguson.
Linear Programming - A Concise Introduction.
UCLA, unpublished document available online.

