Planning and Optimization G6. Linear & Integer Programming

Malte Helmert and Gabriele Röger

Universität Basel

December 6, 2023

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

Planning and Optimization

December 6, 2023 — G6. Linear & Integer Programming

G6.1 Integer Programs

G6.2 Linear Programs

G6.3 Normal Forms and Duality

G6.4 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

G6.1 Integer Programs M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 6, 2023

G6. Linear & Integer Programming

Integer Programs

December 6, 2023

Motivation

- ► This goes on beyond Computer Science
- Active research on IPs and IPs in
 - Operation Research
 - Mathematics
- ► Many application areas, for instance:
 - Manufacturing
 - Agriculture
 - Mining
 - Logistics
 - ► Planning
- ► As an application, we treat LPs / IPs as a blackbox
- ► We just look at the fundamentals
- ▶ However, even on the application side there is much more (e.g., modelling tricks or solver parameters to speed up computation)

G6. Linear & Integer Programming

G6. Linear & Integer Programming

Integer Programs

Integer Programs

Motivation

Example (Optimization Problem)

Consider the following scenario:

- ► A factory produces two products A and B
- ► Selling one (unit of) B yields 5 times the profit of selling one A
- ► A client places the unusual order to "buy anything that can be produced on that day as long as two plus twice the units of A is not smaller than the number of B"
- ► More than 12 products in total cannot be produced per day
- ► There is only material for 6 units of A (there is enough material to produce any amount of B)

How many units of A and B does the client receive if the factory owner aims to maximize her profit?

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Integer Programs

Integer Program: Example

Let X_A and X_B be the (integer) number of produced A and B

Example (Optimization Problem as Integer Program) maximize $X_A + 5X_B$ subject to

$$2 + 2X_A \ge X_B$$
$$X_A + X_B < 12$$

$$X_A < 6$$

$$X_A \geq 0$$
, $X_B \geq 0$

unique optimal solution:

produce 4 A ($X_A = 4$) and 8 B ($X_B = 8$) for a profit of 44

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

2023 3 /

Integer Program Example: Visualization 8 4 4 2 4 2 4 5 6 XA M. Helmert, G. Röger (Universität Basel) Integer Program ing Integer Programs Integer Program ing Integer Programs Integer

G6. Linear & Integer Programming

Integer Programs

Same Program as Input for the CPLEX Solver

File ip.lp
Maximize
obj: X_A + 5 X_B
Subject To
c1: -2 X_A + X_B <= 2
c2: X_A + X_B <= 12
Bounds
0 <= X_A <= 6
0 <= X_B

General

X_A X_B

End

 \rightarrow Demo

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

10 / 3

G6. Linear & Integer Programming

Integer Programs

Integer Programs

Integer Program

An integer program (IP) consists of:

- ► a finite set of integer-valued variables *V*
- ▶ a finite set of linear inequalities (constraints) over *V*
- ▶ an objective function, which is a linear combination of *V*
- which should be minimized or maximized.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

12 / 3

Integer Programs

Terminology

 \triangleright An integer assignment to all variables in V is feasible if it satisfies the constraints.

- ▶ An integer program is feasible if there is such a feasible assignment. Otherwise it is infeasible.
- ▶ A feasible maximum (resp. minimum) problem is unbounded if the objective function can assume arbitrarily large positive (resp. negative) values at feasible assignments. Otherwise it is bounded.
- ► The objective value of a bounded feasible maximum (resp. minimum) problem is the maximum (resp. minimum) value of the objective function with a feasible assignment.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

G6. Linear & Integer Programming

Planning and Optimization

Integer Programs

Another Example

Example

minimize
$$3X_{o_1} + 4X_{o_2} + 5X_{o_3}$$
 subject to

$$X_{o_4} \geq 1$$

$$X_{o_1} + X_{o_2} \ge 1$$

$$X_{o_1} + X_{o_3} \ge 1$$

$$X_{o_2} + X_{o_3} \ge 1$$

$$X_{o_1} \ge 0$$
, $X_{o_2} \ge 0$, $X_{o_3} \ge 0$, $X_{o_4} \ge 0$

What example from a recent chapter does this IP encode?

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

G6. Linear & Integer Programming

Integer Programs

Complexity of Solving Integer Programs

- As an IP can compute an MHS, solving an IP must be at least as complex as computing an MHS
- ► Reminder: MHS is a "classical" NP-complete problem
- ► Good news: Solving an IP is not harder
- → Finding solutions for IPs is NP-complete.

Removing the requirement that solutions must be integer-valued leads to a simpler problem

G6. Linear & Integer Programming

Linear Programs

G6.2 Linear Programs

Linear Programs

Linear Programs

Linear Program

A linear program (LP) consists of:

- ► a finite set of real-valued variables V
- ▶ a finite set of linear inequalities (constraints) over *V*
- \triangleright an objective function, which is a linear combination of V
- which should be minimized or maximized.

We use the introduced IP terminology also for LPs.

Mixed IPs (MIPs) are something between IPs and LPs: some variables are integer-valued, some are real-valued.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

G6. Linear & Integer Programming

Same Program as Input for the CPLEX Solver

File lp.lp

Maximize

obj: $X_A + 5 X_B$

Subject To

c1: -2 X_A + X_B <= 2

c2: $X_A + X_B <= 12$

Bounds

0 <= X_A <= 6

0 <= X_B

End

 \rightarrow Demo

M. Helmert, G. Röger (Universität Basel)

December 6, 2023

G6. Linear & Integer Programming

Linear Programs

Linear Program: Example

Let X_A and X_B be the (real-valued) number of produced A and B

Example (Optimization Problem as Linear Program) maximize $X_A + 5X_B$ subject to

$$2+2X_A \geq X_B$$

$$X_A + X_B \leq 12$$

$$X_A \leq 6$$

$$X_A \geq 0$$
, $X_B \geq 0$

$$X_A = 3\frac{1}{3}$$
 and $X_B = 8\frac{2}{3}$ with objective value $46\frac{2}{3}$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Linear Programs

Solving Linear Programs

Observation:

Here, LP solution is an upper bound for the corresponding IP.

- ► Complexity: LP solving is a polynomial-time problem.
- ► Common idea: Approximate IP solution with corresponding LP (LP relaxation).

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

G6. Linear & Integer Programming

Planning and Optimization

IP Relaxation

Theorem (LP Relaxation)

The LP relaxation of an integer program is the problem that arises by removing the requirement that variables are integer-valued.

For a maximization (resp. minimization) problem, the objective value of the LP relaxation is an upper (resp. lower) bound on the value of the IP.

Proof idea.

Every feasible assignment for the IP is also feasible for the LP.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

G6. Linear & Integer Programming

LP Relaxation of MHS heuristic

Example (Minimum Hitting Set)

minimize
$$3X_{o_1} + 4X_{o_2} + 5X_{o_3}$$
 subject to

$$X_{o_4} \ge 1$$
 $X_{o_1} + X_{o_2} \ge 1$
 $X_{o_1} + X_{o_3} \ge 1$
 $X_{o_2} + X_{o_3} \ge 1$

$$X_{o_1} \ge 0$$
, $X_{o_2} \ge 0$, $X_{o_3} \ge 0$, $X_{o_4} \ge 0$

→ optimal solution of LP relaxation:

$$X_{o_4}=1$$
 and $X_{o_1}=X_{o_2}=X_{o_3}=0.5$ with objective value 6

and can be computed in polynomial time

G6. Linear & Integer Programming

Normal Forms and Duality

G6.3 Normal Forms and Duality

Normal Forms and Duality

Standard Maximum Problem

Normal form for maximization problems:

Definition (Standard Maximum Problem)

Find values for x_1, \ldots, x_n , to maximize

$$c_1x_1 + c_2x_2 + \cdots + c_nx_n$$

subject to the constraints

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \le b_2$
:

$$a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \le b_m$$

and $x_1 \geq 0, x_2 \geq 0, \dots, x_n \geq 0$.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

25 / 35

G6. Linear & Integer Programming

Normal Forms and Duality

Standard Maximum Problem: Matrix and Vectors

A standard maximum problem is often given by

- ▶ an *m*-vector $\mathbf{b} = \langle b_1, \dots, b_m \rangle^T$ (bounds),
- ▶ an *n*-vector $\mathbf{c} = \langle c_1, \dots, c_n \rangle^T$ (objective coefficients),
- ightharpoonup and an $m \times n$ matrix

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
(coefficients)

► Then the problem is to find a vector $\mathbf{x} = \langle x_1, \dots, x_n \rangle^T$ to maximize $\mathbf{c}^T \mathbf{x}$ subject to $\mathbf{A} \mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

00 / 0

G6. Linear & Integer Programming

Normal Forms and Duality

Standard Minimum Problem

- ▶ there is also a standard minimum problem
- ▶ it's form is identical to the standard maximum problem, except that
 - ▶ the aim is to minimize the objective function
 - ightharpoonup subject to $\mathbf{A}\mathbf{x} \geq \mathbf{b}$
- ► All linear programs can efficiently be converted into a standard maximum/minimum problem.

G6. Linear & Integer Programming

Normal Forms and Duality

Some LP Theory: Duality

Every LP has an alternative view (its dual LP).

Primal	Dual
maximization (or minimization)	minimization (or maximization)
objective coefficients	bounds
bounds	objective coefficients
bounded variable	\geq -constraint
\leq -constraint	bounded variable
free variable	=-constraint
=-constraint	free variable

dual of dual: original LP

Dual Problem

Definition (Dual Problem)

The dual of the standard maximum problem

maximize $\mathbf{c}^T \mathbf{x}$ subject to $\mathbf{A} \mathbf{x} < \mathbf{b}$ and $\mathbf{x} > \mathbf{0}$

is the standard minimum problem

minimize $\mathbf{b}^T \mathbf{y}$ subject to $\mathbf{A}^T \mathbf{y} \geq \mathbf{c}$ and $\mathbf{y} \geq \mathbf{0}$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

Dual Problem: Example

G6. Linear & Integer Programming

Example (Dual of the Optimization Problem)

 $[Y_3]$

maximize $X_A + 5X_B$ subject to

 $-2X_{A} + X_{B} \leq 2$

 $[Y_2]$ $X_A + X_B \leq 12$

 $X_{A} < 6$

 $X_A \geq 0$, $X_B \geq 0$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

G6. Linear & Integer Programming

Normal Forms and Duality

Dual Problem: Example

Example (Dual of the Optimization Problem)

minimize $2Y_1 + 12Y_2 + 6Y_3$ subject to

 $[X_A]$

 $-2Y_1 + Y_2 + Y_3 > 1$

 $[X_B]$

 $Y_1 + Y_2 \ge 5$

 $Y_1 \ge 0$, $Y_2 \ge 0$, $Y_3 \ge 0$

G6. Linear & Integer Programming

Normal Forms and Duality

Duality Theorem

Theorem (Duality Theorem)

If a standard linear program is bounded feasible, then so is its dual, and their objective values are equal.

(Proof omitted.)

The dual provides a different perspective on a problem.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023 31 / 35

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

G6.4 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

G6. Linear & Integer Programming

Further Reading

The slides in this chapter are based on the following excellent tutorial on LP solving:

Thomas S. Ferguson.

Linear Programming – A Concise Introduction.

UCLA, unpublished document available online.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

G6. Linear & Integer Programming

Summary

- ► Linear (and integer) programs consist of an objective function that should be maximized or minimized subject to a set of given linear constraints.
- Finding solutions for integer programs is NP-complete.
- ► LP solving is a polynomial time problem.
- ▶ The dual of a maximization LP is a minimization LP and vice versa.
- ► The dual of a bounded feasible LP has the same objective value.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization