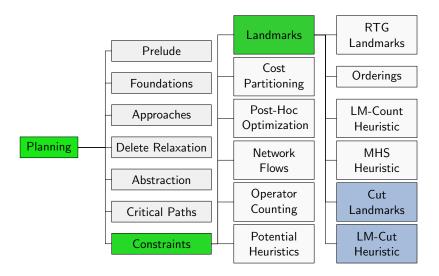
Planning and Optimization


G5. Landmarks: Cut Landmarks & LM-Cut Heuristic

Malte Helmert and Gabriele Röger

Universität Basel

December 6, 2023

Content of this Course

Roadmap for this Chapter

- We first introduce a new normal form for delete-free STRIPS tasks that simplifies later definitions.
- We then present a method that computes disjunctive action landmarks for such tasks.
- We conclude with the LM-cut heuristic that builds on this method.

i-g Form ●000

i-g Form

In this chapter, we only consider delete-free STRIPS tasks in a special form:

Definition (i-g Form for Delete-free STRIPS)

A delete-free STRIPS planning task $\langle V, I, O, \gamma \rangle$ is in i-g form if

- V contains atoms i and g
- Initially exactly i is true: I(v) = T iff v = i
- lacksquare g is the only goal atom: $\gamma = \{g\}$
- Every action has at least one precondition.

i-g Form

Every delete-free STRIPS task $\Pi = \langle V, I, O, \gamma \rangle$ can easily be transformed into an analogous task in i-g form.

- If i or g are in V already, rename them everywhere.
- \blacksquare Add i and g to V.
- Add an operator $\langle \{i\}, \{v \in V \mid I(v) = \mathbf{T}\}, \{\}, 0 \rangle$.
- Add an operator $\langle \gamma, \{g\}, \{\}, 0 \rangle$.
- Replace all operator preconditions \top with i.
- Replace initial state and goal.

Transformation to i-g Form

Every delete-free STRIPS task $\Pi = \langle V, I, O, \gamma \rangle$ can easily be transformed into an analogous task in i-g form.

- If i or g are in V already, rename them everywhere.
- \blacksquare Add i and g to V.
- Add an operator $\langle \{i\}, \{v \in V \mid I(v) = \mathbf{T}\}, \{\}, 0 \rangle$.
- Add an operator $\langle \gamma, \{g\}, \{\}, 0 \rangle$.
- Replace all operator preconditions \top with i.
- Replace initial state and goal.

For the remainder of this chapter, we assume tasks in i-g form.

Example: Delete-Free Planning Task in i-g Form

Example

i-g Form

Consider a delete-relaxed STRIPS planning $\langle V, I, O, \gamma \rangle$ with $V = \{i, a, b, c, d, g\}, I = \{i \mapsto T\} \cup \{v \mapsto F \mid v \in V \setminus \{i\}\}, \gamma = g$ and operators

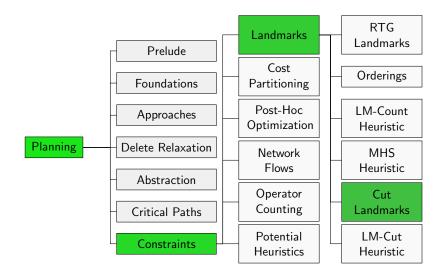
- $O_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle,$
- $o_{\text{green}} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle$,
- $o_{black} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle$
- $o_{red} = \langle \{b, c\}, \{d\}, \{\}, 2 \rangle, and$

optimal solution?

Example

i-g Form

Consider a delete-relaxed STRIPS planning $\langle V, I, O, \gamma \rangle$ with $V = \{i, a, b, c, d, g\}, I = \{i \mapsto T\} \cup \{v \mapsto F \mid v \in V \setminus \{i\}\}, \gamma = g$ and operators


- $O_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle,$
- $oldsymbol{o}_{green} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle$
- $o_{black} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle$
- $o_{red} = \langle \{b, c\}, \{d\}, \{\}, 2 \rangle, and$
- $O_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle$.

optimal solution to reach g from i:

- plan: ⟨o_{blue}, o_{black}, o_{red}, o_{orange}⟩
- cost: 4 + 3 + 2 + 0 = 9 (= $h^+(I)$ because plan is optimal)

Cut Landmarks

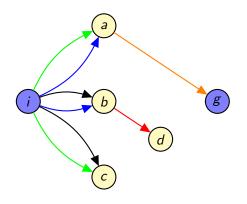
Content of this Course

Justification Graphs

Definition (Precondition Choice Function)

A precondition choice function (pcf) $P: O \to V$ for a delete-free STRIPS task $\Pi = \langle V, I, O, \gamma \rangle$ in i-g form maps each operator to one of its preconditions (i.e. $P(o) \in pre(o)$ for all $o \in O$).

Definition (Justification Graphs)

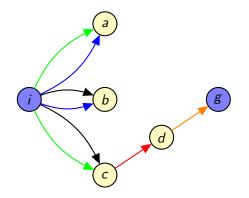

Let P be a pcf for $\langle V, I, O, \gamma \rangle$ in i-g form. The justification graph for P is the directed, edge-labeled graph $J = \langle V, E \rangle$, where

- the vertices are the variables from V, and
- E contains an edge $P(o) \xrightarrow{o} a$ for each $o \in O$, $a \in add(o)$.

Example: Justification Graph

Example (Precondition Choice Function)

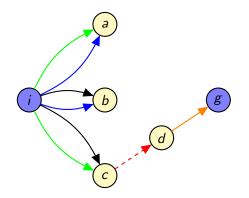
$$P(o_{\text{blue}}) = P(o_{\text{green}}) = P(o_{\text{black}}) = i, P(o_{\text{red}}) = b, P(o_{\text{orange}}) = a$$



$$\begin{array}{l} o_{\mathsf{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4\} \\ o_{\mathsf{green}} = \langle \{i\}, \{a, c\}, \{\}, 5\} \\ o_{\mathsf{black}} = \langle \{i\}, \{b, c\}, \{\}, 3\} \\ o_{\mathsf{red}} = \langle \{b, c\}, \{d\}, \{\}, 2\} \\ o_{\mathsf{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0\} \end{array}$$

Example: Justification Graph

Example (Precondition Choice Function)

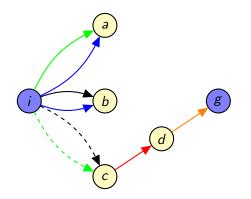

$$P(o_{\text{blue}}) = P(o_{\text{green}}) = P(o_{\text{black}}) = i, P(o_{\text{red}}) = b, P(o_{\text{orange}}) = a$$

 $P'(o_{\text{blue}}) = P'(o_{\text{green}}) = P'(o_{\text{black}}) = i, P'(o_{\text{red}}) = c, P'(o_{\text{orange}}) = d$

$$\begin{array}{l} o_{\mathsf{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4\} \\ o_{\mathsf{green}} = \langle \{i\}, \{a, c\}, \{\}, 5\} \\ o_{\mathsf{black}} = \langle \{i\}, \{b, c\}, \{\}, 3\} \\ o_{\mathsf{red}} = \langle \{b, c\}, \{d\}, \{\}, 2\} \\ o_{\mathsf{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0\} \end{array}$$

Definition (Cut)

A cut in a justification graph is a subset C of its edges such that all paths from i to g contain an edge from C.



$$\begin{aligned} o_{\text{blue}} &= \langle \{i\}, \{a, b\}, \{\}, 4 \rangle \\ o_{\text{green}} &= \langle \{i\}, \{a, c\}, \{\}, 5 \rangle \\ o_{\text{black}} &= \langle \{i\}, \{b, c\}, \{\}, 3 \rangle \\ o_{\text{red}} &= \langle \{b, c\}, \{d\}, \{\}, 2 \rangle \\ o_{\text{orange}} &= \langle \{a, d\}, \{g\}, \{\}, 0 \rangle \end{aligned}$$

Cuts

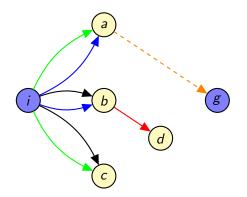
Definition (Cut)

A cut in a justification graph is a subset C of its edges such that all paths from i to g contain an edge from C.

$$\begin{aligned} o_{\text{blue}} &= \langle \{i\}, \{a, b\}, \{\}, 4 \rangle \\ o_{\text{green}} &= \langle \{i\}, \{a, c\}, \{\}, 5 \rangle \\ o_{\text{black}} &= \langle \{i\}, \{b, c\}, \{\}, 3 \rangle \\ o_{\text{red}} &= \langle \{b, c\}, \{d\}, \{\}, 2 \rangle \\ o_{\text{orange}} &= \langle \{a, d\}, \{g\}, \{\}, 0 \rangle \end{aligned}$$

Theorem (Cuts are Disjunctive Action Landmarks)

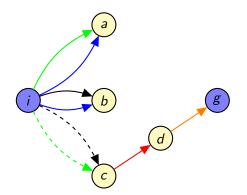
Let P be a pcf for $\langle V, I, O, \gamma \rangle$ (in i-g form) and C be a cut in the justification graph for P.


The set of edge labels from C (formally $\{o \mid \langle v, o, v' \rangle \in C\}$) is a disjunctive action landmark for I.

Proof idea:

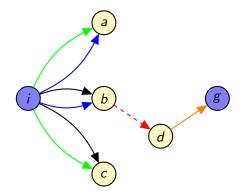
- The justification graph corresponds to a simpler problem where some preconditions (those not picked by the pcf) are ignored.
- Cuts are landmarks for this simplified problem.
- Hence they are also landmarks for the original problem.

Example (Landmarks)


 $L_1 = \{ o_{\text{orange}} \} \text{ (cost } = 0)$

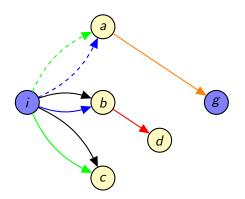
$$\begin{aligned} & o_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle \\ & o_{\text{green}} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle \\ & o_{\text{black}} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle \\ & o_{\text{red}} = \langle \{b, c\}, \{d\}, \{\}, 2 \rangle \\ & o_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle \end{aligned}$$

Example (Landmarks)


■
$$L_1 = \{o_{\text{orange}}\}\ (\text{cost} = 0)$$
 ■ $L_2 = \{o_{\text{green}}, o_{\text{black}}\}\ (\text{cost} = 3)$

$$\begin{aligned} & o_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle \\ & o_{\text{green}} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle \\ & o_{\text{black}} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle \\ & o_{\text{red}} = \langle \{b, c\}, \{d\}, \{\}, 2 \rangle \\ & o_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle \end{aligned}$$

Example (Landmarks)


- $L_1 = \{o_{\text{orange}}\}$ (cost = 0) $L_2 = \{o_{\text{green}}, o_{\text{black}}\}$ (cost = 3)
- $L_3 = \{o_{red}\}\ (cost = 2)$

$$\begin{array}{l} o_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4\} \\ o_{\text{green}} = \langle \{i\}, \{a, c\}, \{\}, 5\rangle \\ o_{\text{black}} = \langle \{i\}, \{b, c\}, \{\}, 3\rangle \\ o_{\text{red}} = \langle \{b, c\}, \{d\}, \{\}, 2\rangle \\ o_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0\rangle \end{array}$$

Example (Landmarks)

- $L_1 = \{ o_{\text{orange}} \} \text{ (cost } = 0)$
- $L_3 = \{o_{red}\}\ (cost = 2)$
- $\blacksquare L_4 = \{o_{green}, o_{blue}\} \text{ (cost } = 4)$

$$\begin{aligned} & o_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle \\ & o_{\text{green}} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle \\ & o_{\text{black}} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle \\ & o_{\text{red}} = \langle \{b, c\}, \{d\}, \{\}, 2 \rangle \\ & o_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle \end{aligned}$$

Power of Cuts in Justification Graphs

Which landmarks can be computed with the cut method?

Power of Cuts in Justification Graphs

- Which landmarks can be computed with the cut method?
- all interesting ones!

Proposition (perfect hitting set heuristics)

Let \mathcal{L} be the set of all "cut landmarks" of a given planning task with initial state I. Then $h^{MHS}(\mathcal{L}) = h^+(I)$.

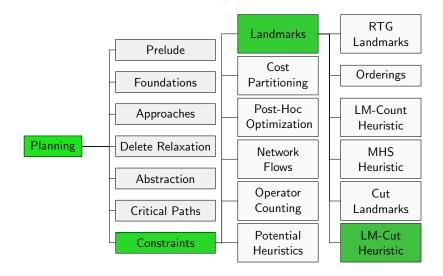
 \rightsquigarrow Hitting set heuristic for \mathcal{L} is perfect.

Power of Cuts in Justification Graphs

- Which landmarks can be computed with the cut method?
- all interesting ones!

Proposition (perfect hitting set heuristics)

Let \mathcal{L} be the set of all "cut landmarks" of a given planning task with initial state I. Then $h^{MHS}(\mathcal{L}) = h^+(I)$.


 \rightsquigarrow Hitting set heuristic for \mathcal{L} is perfect.

Proof idea:

Show 1:1 correspondence of hitting sets H for \mathcal{L} and plans, i.e., each hitting set for \mathcal{L} corresponds to a plan, and vice versa.

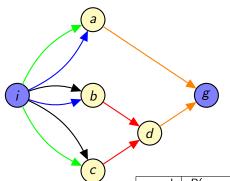
The LM-Cut Heuristic

Content of this Course

LM-Cut Heuristic: Motivation

- In general, there are exponentially many pcfs, hence computing all relevant landmarks is not tractable.
- The LM-cut heuristic is a method that chooses pcfs and computes cuts in a goal-oriented way.
- As a side effect, it computes a
 - lacksquare a cost partitioning over multiple instances of h^{\max} that is also
 - a saturated cost partitioning over disjunctive action landmarks.
 - → next week

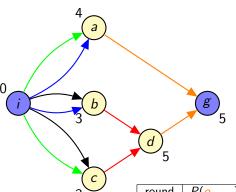
LM-Cut Heuristic


h^{LM-cut}: Helmert & Domshlak (2009)

Initialize $h^{LM-cut}(I) := 0$. Then iterate:

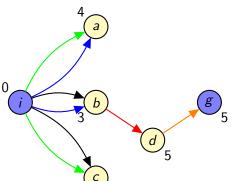
① Compute h^{max} values of the variables. Stop if $h^{\text{max}}(g) = 0$.

The I M-Cut Heuristic

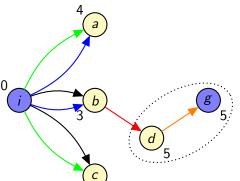

- 2 Compute justification graph G for the P that chooses preconditions with maximal h^{max} value
- **1** Determine the goal zone V_g of G that consists of all nodes that have a zero-cost path to g.
- Compute the cut L that contains the labels of all edges $\langle v, o, v' \rangle$ such that $v \notin V_{g}, v' \in V_{g}$ and v can be reached from i without traversing a node in V_{g} . It is guaranteed that cost(L) > 0.
- **1** Increase $h^{LM-cut}(I)$ by cost(L).
- **1** Decrease cost(o) by cost(L) for all $o \in L$.

$$\begin{aligned} & o_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle \\ & o_{\text{green}} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle \\ & o_{\text{black}} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle \\ & o_{\text{red}} = \langle \{b, c\}, \{d\}, \{\}, 2 \rangle \\ & o_{\text{range}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle \end{aligned}$$

round $P(o_{orange})$ $P(o_{red})$ landmark cost 0

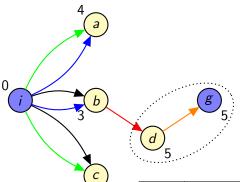

1 Compute h^{max} values of the variables

$$\begin{aligned} & o_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle \\ & o_{\text{green}} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle \\ & o_{\text{black}} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle \\ & o_{\text{red}} = \langle \{b, c\}, \{d\}, \{\}, 2 \rangle \\ & o_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle \end{aligned}$$

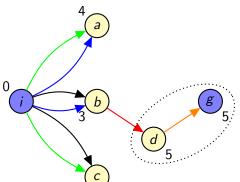

 $P(O_{\text{orange}})$ $P(O_{\text{red}})$ landmark cost $P(O_{\text{red}})$ $P(O_{\text{red}$

Compute justification graph

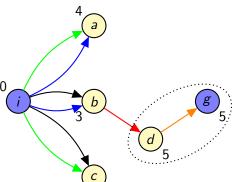
$$\begin{aligned} & o_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle \\ & o_{\text{green}} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle \\ & o_{\text{black}} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle \\ & o_{\text{red}} = \langle \{b, c\}, \{d\}, \{\}, 2 \rangle \\ & o_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle \end{aligned}$$


Oetermine goal zone

$$\begin{aligned} & o_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle \\ & o_{\text{green}} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle \\ & o_{\text{black}} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle \\ & o_{\text{red}} = \langle \{b, c\}, \{d\}, \{\}, 2 \rangle \\ & o_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle \end{aligned}$$

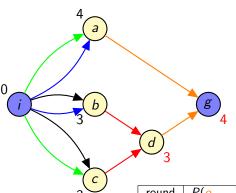

round	$P(o_{\text{orange}})$	$P(o_{red})$	landmark	cost
1	d	b		
			$h^{\text{LM-cut}}(I)$	0

Compute cut


$$\begin{aligned} & o_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle \\ & o_{\text{green}} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle \\ & o_{\text{black}} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle \\ & o_{\text{red}} = \langle \{b, c\}, \{d\}, \{\}, 2 \rangle \\ & o_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle \end{aligned}$$

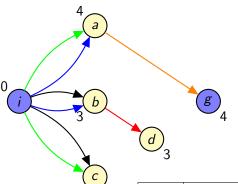
5 Increase $h^{LM-cut}(I)$ by cost(L)

$$\begin{aligned} & o_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle \\ & o_{\text{green}} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle \\ & o_{\text{black}} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle \\ & o_{\text{red}} = \langle \{b, c\}, \{d\}, \{\}, 2 \rangle \\ & o_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle \end{aligned}$$


1 Decrease cost(o) by cost(L) for all $o \in L$

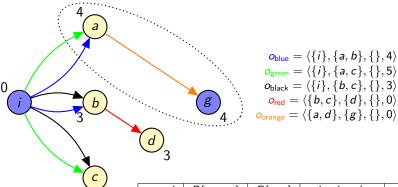
$$\begin{aligned} & o_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle \\ & o_{\text{green}} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle \\ & o_{\text{black}} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle \\ & o_{\text{red}} = \langle \{b, c\}, \{d\}, \{\}, 0 \rangle \\ & o_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle \end{aligned}$$

	round	$P(o_{\text{orange}})$	$P(o_{red})$	landmark	cost
	1	d	b	{o _{red} }	2
ĺ					
Ì					
				$h^{\text{LM-cut}}(I)$	2

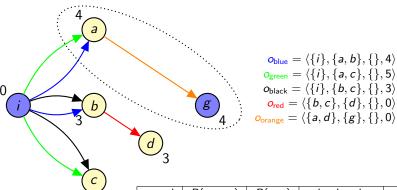

1 Compute h^{max} values of the variables

$$\begin{aligned} o_{\text{blue}} &= \langle \{i\}, \{a, b\}, \{\}, 4 \rangle \\ o_{\text{green}} &= \langle \{i\}, \{a, c\}, \{\}, 5 \rangle \\ o_{\text{black}} &= \langle \{i\}, \{b, c\}, \{\}, 3 \rangle \\ o_{\text{red}} &= \langle \{b, c\}, \{d\}, \{\}, 0 \rangle \\ o_{\text{orange}} &= \langle \{a, d\}, \{g\}, \{\}, 0 \rangle \end{aligned}$$

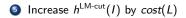
$\overline{}$			- (
r	ound	$P(o_{\text{orange}})$	$P(o_{red})$	landmark	cost
	1	d	b	$\{o_{red}\}$	2
	2				
				$h^{\text{LM-cut}}(I)$	2

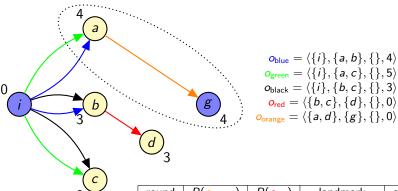

Compute justification graph

$$\begin{array}{l} o_{\text{blue}} = \langle \{i\}, \{a,b\}, \{\}, 4 \rangle \\ o_{\text{green}} = \langle \{i\}, \{a,c\}, \{\}, 5 \rangle \\ o_{\text{black}} = \langle \{i\}, \{b,c\}, \{\}, 3 \rangle \\ o_{\text{red}} = \langle \{b,c\}, \{d\}, \{\}, 0 \rangle \\ o_{\text{orange}} = \langle \{a,d\}, \{g\}, \{\}, 0 \rangle \end{array}$$

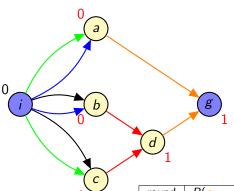

round $P(o_{orange})$ $P(o_{red})$ landmark cost Ч b $\{o_{red}\}$ 2 2 b 2

Determine goal zone




round	$P(o_{\text{orange}})$	$P(o_{red})$	landmark	cost
1	d	b	{o _{red} }	2
2	a	b		
			$h^{\text{LM-cut}}(I)$	2

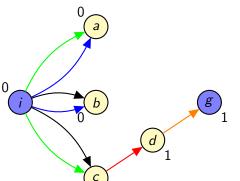

round	$P(o_{orange})$	$P(o_{red})$	landmark	cost
1	d	b	$\{o_{red}\}$	2
2	a	b	{o _{green} , o _{blue} }	4
			$h^{LM-cut}(I)$	2


	round	$P(o_{\text{orange}})$	$P(o_{red})$	landmark	cost
	1	d	b	{o _{red} }	2
ĺ	2	a	b	{o _{green} , o _{blue} }	4
				$h^{\text{LM-cut}}(I)$	6

Decrease cost(o) by cost(L) for all $o \in L$

round	$P(o_{\text{orange}})$	$P(o_{red})$	landmark	cost
1	d	b	{o _{red} }	2
2	а	b	$\{o_{green}, o_{blue}\}$	4
			$h^{LM-cut}(I)$	6

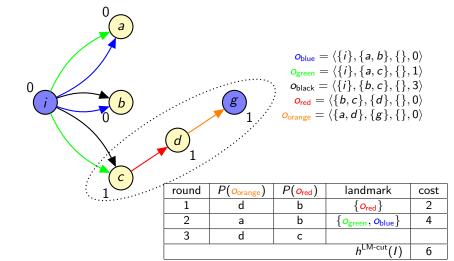
 \bullet Compute h^{\max} values of the variables

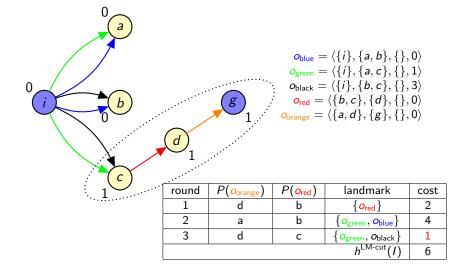


$$egin{aligned} o_{ ext{blue}} &= \langle \{i\}, \{a, b\}, \{\}, 0
angle \ o_{ ext{green}} &= \langle \{i\}, \{a, c\}, \{\}, 1
angle \ o_{ ext{black}} &= \langle \{i\}, \{b, c\}, \{\}, 3
angle \end{aligned}$$

$$o_{
m red} = \langle \{b, c\}, \{d\}, \{\}, 0 \rangle \\ o_{
m orange} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle$$

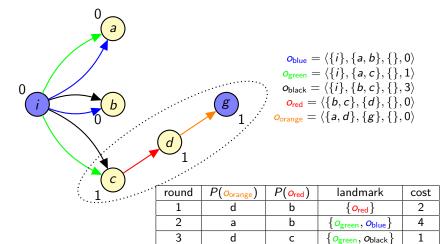
$$\begin{array}{c|cccc} \text{round} & P(\textcolor{red}{o_{orange}}) & P(\textcolor{red}{o_{red}}) & \text{landmark} & \text{cost} \\ \hline 1 & d & b & \{\textcolor{red}{o_{red}}\} & 2 \\ \hline 2 & a & b & \{\textcolor{red}{o_{green}}, \textcolor{red}{o_{blue}}\} & 4 \\ \hline 3 & & & & \\ \hline \end{pmatrix}$$

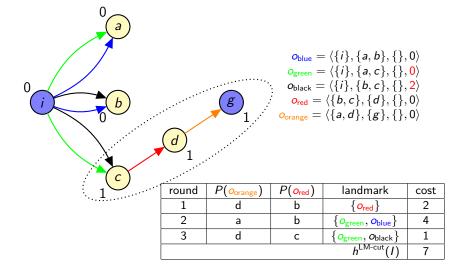

2 Compute justification graph


$$\begin{aligned} o_{\text{blue}} &= \langle \{i\}, \{a, b\}, \{\}, 0 \rangle \\ o_{\text{green}} &= \langle \{i\}, \{a, c\}, \{\}, 1 \rangle \\ o_{\text{black}} &= \langle \{i\}, \{b, c\}, \{\}, 3 \rangle \\ o_{\text{red}} &= \langle \{b, c\}, \{d\}, \{\}, 0 \rangle \\ o_{\text{crange}} &= \langle \{a, d\}, \{g\}, \{\}, 0 \rangle \end{aligned}$$

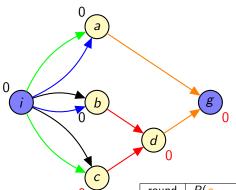
$$\begin{array}{c|cccc} \text{round} & P(\textcolor{red}{o_{orange}}) & P(\textcolor{red}{o_{red}}) & \text{landmark} & \text{cost} \\ \hline 1 & d & b & \{\textcolor{red}{o_{red}}\} & 2 \\ \hline 2 & a & b & \{\textcolor{red}{o_{green}}, \textcolor{red}{o_{blue}}\} & 4 \\ \hline 3 & d & c & \\ \hline \\ & h^{\text{LM-cut}}(I) & 6 \\ \hline \end{array}$$

Determine goal zone


Compute cut


 $h^{LM-cut}(I)$

Example: Computation of LM-Cut


1 Increase $h^{LM-cut}(I)$ by cost(L)

1 Decrease cost(o) by cost(L) for all $o \in L$

① Compute h^{max} values of the variables. Stop if $h^{\text{max}}(g) = 0$.

$$o_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 0 \rangle \\
o_{\text{green}} = \langle \{i\}, \{a, c\}, \{\}, 0 \rangle$$

$$o_{\text{black}} = \langle \{i\}, \{b, c\}, \{\}, 2 \rangle$$

 $o_{\text{red}} = \langle \{b, c\}, \{d\}, \{\}, 0 \rangle$

$$O_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle$$

round $P(o_{orange})$ $P(o_{red})$ landmark cost Ч b $\{o_{red}\}$ 2 b a $\{o_{\mathsf{green}}, o_{\mathsf{blue}}\}$ 3 d C { Ogreen, Oblack } $h^{LM-cut}(I)$

Properties of LM-Cut Heuristic

$\mathsf{Theorem}$

Let $\langle V, I, O, \gamma \rangle$ be a delete-free STRIPS task in i-g normal form. The LM-cut heuristic is admissible: $h^{LM-cut}(I) \leq h^*(I)$.

Proof omitted.

If Π is not delete-free, we can compute $h^{\text{LM-cut}}$ on Π^+ . Then $h^{\text{LM-cut}}$ is bounded by h^+ .

Summary

- Cuts in justification graphs are a general method to find disjunctive action landmarks.
- The minimum hitting set over all cut landmarks is a perfect heuristic for delete-free planning tasks.
- The LM-cut heuristic is an admissible heuristic based on these ideas.