Planning and Optimization

G5. Landmarks: Cut Landmarks & LM-Cut Heuristic

Malte Helmert and Gabriele Röger

Universität Basel

December 6, 2023

M. Helmert, G. Röger (Universität Basel)

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023 1 / 26

December 6, 2023

Planning and Optimization

December 6, 2023 — G5. Landmarks: Cut Landmarks & LM-Cut Heuristic

G5.1 i-g Form

G5.2 Cut Landmarks

G5.3 The LM-Cut Heuristic

G5.4 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023 2 / 26

Content of this Course

Planning and Optimization

Roadmap for this Chapter

- ► We first introduce a new normal form for delete-free STRIPS tasks that simplifies later definitions.
- ▶ We then present a method that computes disjunctive action landmarks for such tasks.
- ► We conclude with the LM-cut heuristic that builds on this method.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

G5. Landmarks: Cut Landmarks & LM-Cut Heuristic

G5.1 i-g Form

g Form

G5. Landmarks: Cut Landmarks & LM-Cut Heuristic

i-g Form

Delete-Free STRIPS Planning Task in i-g Form (1)

In this chapter, we only consider delete-free STRIPS tasks in a special form:

Definition (i-g Form for Delete-free STRIPS)

A delete-free STRIPS planning task $\langle V, I, O, \gamma \rangle$ is in i-g form if

- ► V contains atoms i and g
- ▶ Initially exactly *i* is true: I(v) = T iff v = i
- ▶ g is the only goal atom: $\gamma = \{g\}$
- ▶ Every action has at least one precondition.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023 5

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

6 / 26

G5. Landmarks: Cut Landmarks & LM-Cut Heuristic

i-g Form

Transformation to i-g Form

Every delete-free STRIPS task $\Pi = \langle V, I, O, \gamma \rangle$ can easily be transformed into an analogous task in i-g form.

- \triangleright If i or g are in V already, rename them everywhere.
- ightharpoonup Add i and g to V.
- Add an operator $\langle \{i\}, \{v \in V \mid I(v) = \mathbf{T}\}, \{\}, 0 \rangle$.
- ▶ Add an operator $\langle \gamma, \{g\}, \{\}, 0 \rangle$.
- ▶ Replace all operator preconditions \top with i.
- ► Replace initial state and goal.

For the remainder of this chapter, we assume tasks in i-g form.

G5. Landmarks: Cut Landmarks & LM-Cut Heuristic

i_a Forr

Example: Delete-Free Planning Task in i-g Form

Example

Consider a delete-relaxed STRIPS planning $\langle V, I, O, \gamma \rangle$ with $V = \{i, a, b, c, d, g\}$, $I = \{i \mapsto \mathbf{T}\} \cup \{v \mapsto \mathbf{F} \mid v \in V \setminus \{i\}\}$, $\gamma = g$ and operators

- $ightharpoonup o_{blue} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle,$
- $o_{green} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle$,
- $o_{black} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle$,
- $ightharpoonup o_{red} = (\{b, c\}, \{d\}, \{\}, 2), \text{ and}$
- $o_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle.$

optimal solution to reach g from i:

- ▶ plan: ⟨o_{blue}, o_{black}, o_{red}, o_{orange}⟩
- $ightharpoonup cost: 4 + 3 + 2 + 0 = 9 \quad (= h^+(I) \text{ because plan is optimal})$

M. Helmert, G. Röger (Universität Basel)

G5. Landmarks: Cut Landmarks & LM-Cut Heuristic Cut Landmarks

G5.2 Cut Landmarks

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023 9 / 26

G5. Landmarks: Cut Landmarks & LM-Cut Heuristic

Cut Landmarks

Justification Graphs

Definition (Precondition Choice Function)

A precondition choice function (pcf) $P: O \rightarrow V$ for a delete-free STRIPS task $\Pi = \langle V, I, O, \gamma \rangle$ in i-g form maps each operator to one of its preconditions (i.e. $P(o) \in pre(o)$ for all $o \in O$).

Definition (Justification Graphs)

Let P be a pcf for $\langle V, I, O, \gamma \rangle$ in i-g form. The justification graph for P is the directed, edge-labeled graph $J = \langle V, E \rangle$, where

- \triangleright the vertices are the variables from V, and
- ▶ E contains an edge $P(o) \xrightarrow{o} a$ for each $o \in O$, $a \in add(o)$.

Cuts

Definition (Cut)

A cut in a justification graph is a subset C of its edges such that all paths from i to g contain an edge from C.

 $o_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle$ $o_{green} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle$

 $o_{\mathsf{black}} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle$

 $o_{\text{red}} = \langle \{b, c\}, \{d\}, \{\}, 2 \rangle$

 $o_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle$

M. Helmert, G. Röger (Universität Basel)

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

Cuts are Disjunctive Action Landmarks

Theorem (Cuts are Disjunctive Action Landmarks)

Let P be a pcf for $\langle V, I, O, \gamma \rangle$ (in i-g form) and C be a cut in the justification graph for P.

The set of edge labels from C (formally $\{o \mid \langle v, o, v' \rangle \in C\}$) is a disjunctive action landmark for I.

Proof idea:

- ▶ The justification graph corresponds to a simpler problem where some preconditions (those not picked by the pcf) are ignored.
- Cuts are landmarks for this simplified problem.
- ► Hence they are also landmarks for the original problem.

M. Helmert, G. Röger (Universität Basel)

December 6, 2023

G5. Landmarks: Cut Landmarks & LM-Cut Heuristic

Example: Cuts in Justification Graphs

Example (Landmarks)

$$L_2 = \{o_{green}, o_{black}\} \text{ (cost } = 3)$$

$$\blacktriangleright L_3 = \{o_{red}\} \text{ (cost = 2)} \qquad \blacktriangleright L_4 = \{o_{green}, o_{blue}\} \text{ (cost = 4)}$$

Planning and Optimization

 $o_{\text{blue}} = \langle \{i\}, \{a, b\}, \{\}, 4 \rangle$

 $o_{green} = \langle \{i\}, \{a, c\}, \{\}, 5 \rangle$

 $o_{\text{black}} = \langle \{i\}, \{b, c\}, \{\}, 3 \rangle$

 $o_{red} = \langle \{b, c\}, \{d\}, \{\}, 2 \rangle$

December 6, 2023

 $o_{\text{orange}} = \langle \{a, d\}, \{g\}, \{\}, 0 \rangle$

G5. Landmarks: Cut Landmarks & LM-Cut Heuristic

Power of Cuts in Justification Graphs

- ▶ Which landmarks can be computed with the cut method?
- ▶ all interesting ones!

Proposition (perfect hitting set heuristics)

Let \mathcal{L} be the set of all "cut landmarks" of a given planning task with initial state I. Then $h^{MHS}(\mathcal{L}) = h^+(I)$.

 \rightsquigarrow Hitting set heuristic for \mathcal{L} is perfect.

Proof idea:

▶ Show 1:1 correspondence of hitting sets H for \mathcal{L} and plans, i.e., each hitting set for \mathcal{L} corresponds to a plan, and vice versa.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

G5. Landmarks: Cut Landmarks & LM-Cut Heuristic The LM-Cut Heuristic

G5.3 The LM-Cut Heuristic

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

17 / 26

G5. Landmarks: Cut Landmarks & LM-Cut Heuristic The LM-Cut Heuristic Content of this Course **RTG** Landmarks Landmarks Prelude Cost Orderings **Foundations** Partitioning Post-Hoc I M-Count Approaches Optimization Heuristic **Planning** Delete Relaxation Network MHS Flows Heuristic Abstraction Operator Cut Counting Critical Paths Landmarks Potential LM-Cut Constraints Heuristics Heuristic M. Helmert, G. Röger (Universität Basel) Planning and Optimization December 6, 2023

G5. Landmarks: Cut Landmarks & LM-Cut Heuristic

The LM-Cut Heuristic

LM-Cut Heuristic: Motivation

- ► In general, there are exponentially many pcfs, hence computing all relevant landmarks is not tractable.
- ► The LM-cut heuristic is a method that chooses pcfs and computes cuts in a goal-oriented way.
- ► As a side effect, it computes a
 - ightharpoonup a cost partitioning over multiple instances of h^{\max} that is also
 - a saturated cost partitioning over disjunctive action landmarks.
 ~ next week

G5. Landmarks: Cut Landmarks & LM-Cut Heuristic

The LM-Cut Heuristic

LM-Cut Heuristic

h^{LM-cut}: Helmert & Domshlak (2009)

Initialize $h^{LM-cut}(I) := 0$. Then iterate:

- ① Compute h^{max} values of the variables. Stop if $h^{\text{max}}(g) = 0$.
- ② Compute justification graph G for the P that chooses preconditions with maximal h^{max} value
- **3** Determine the goal zone V_g of G that consists of all nodes that have a zero-cost path to g.
- **③** Compute the cut L that contains the labels of all edges $\langle v, o, v' \rangle$ such that $v \notin V_g$, $v' \in V_g$ and v can be reached from i without traversing a node in V_g . It is guaranteed that cost(L) > 0.
- **1** Increase $h^{LM-cut}(I)$ by cost(L).
- **1** Decrease cost(o) by cost(L) for all $o \in L$.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

20 /

G5. Landmarks: Cut Landmarks & LM-Cut Heuristic

The LM-Cut Heuristic

Properties of LM-Cut Heuristic

Theorem

Let $\langle V, I, O, \gamma \rangle$ be a delete-free STRIPS task in i-g normal form. The LM-cut heuristic is admissible: $h^{LM-cut}(I) \leq h^*(I)$.

Proof omitted.

If Π is not delete-free, we can compute $h^{\text{LM-cut}}$ on Π^+ . Then $h^{\text{LM-cut}}$ is bounded by h^+ .

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

G5. Landmarks: Cut Landmarks & LM-Cut Heuristic Summa

G5.4 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023 25

G5. Landmarks: Cut Landmarks & LM-Cut Heuristic

Summary

- ► Cuts in justification graphs are a general method to find disjunctive action landmarks.
- ► The minimum hitting set over all cut landmarks is a perfect heuristic for delete-free planning tasks.
- ► The LM-cut heuristic is an admissible heuristic based on these ideas.

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

December 6, 2023

26 / 26