Planning and Optimization
G3. Landmarks: Orderings & LM-Count Heuristic

Malte Helmert and Gabriele Roger

Universitat Basel

December 4, 2023

Landmark Orderings

®0000000

Landmark Orderings

Landmark Orderings
0e000000

Content of this Course

_| Prelude | Landmarks

ivoning | | IIOREHEN
—I Foundations | Partitioning

—I Approaches | || Post-Hoc | | LM-Count
Optimization Heuristic
[PlSning|— | Delete Relaxation Network MHS
] Flows | Heuristic
—I Abstraction |
|| Operator | Cut
—I Critical Paths | Counting Landmarks

D o S e
Heuristics Heuristic

Landmark Orderings L Lal k-count Heuristic

[e]e] lele]elele)

Why Landmark Orderings?

To compute a landmark heuristic estimate for state s
we need landmarks for s.

We could invest the time to compute them
for every state from scratch.

Alternatively, we can compute landmarks once and
propagate them over operator applications.

Landmark orderings are used to detect landmarks that should
be further considered because they (again) need to be
satisfied later.

(We will later see yet another approach, where heuristic
computation and landmark computation are integrated ~~ LM-Cut.)

Landmark Orderings

[e]e]e] le]elele)

Example

Consider task ({a, b, c,d},I,{01,02,...,0,},d) with
m/(v)=_Lforve{abcd}
m oy =(T,aAb), and

m 0p = (a,c A —a A —b) (plus some more operators).

You know that a, b, ¢ and d are all fact landmarks for /.

m What landmarks are still required to be made true in state
I[(o1, 02)]?

Landmark Orderings

[e]e]e] le]elele)

Example

Consider task ({a, b, c,d},I,{01,02,...,0,},d) with
m/(v)=_Lforve{abcd}
m oy =(T,aAb), and

m 0p = (a,c A —a A —b) (plus some more operators).

You know that a, b, ¢ and d are all fact landmarks for /.

m What landmarks are still required to be made true in state
I[(o1, 02)]?

m You get the additional information that variable a must be
true immediately before d is first made true. Any changes?

Landmark Orderings a o k-count Heuristic Summar

[e]e]e]e] lelele)

Terminology

Let 7 = (o1,...,0pn) be a sequence of operators applicable in
state / and let ¢ be a formula over the state variables.
m o is true at time 7 if I[{o1,...,0)] E ¢.
m Also special case i = 0: ¢ is true at time 0 if | |= ¢.
m No formula is true at time i < 0.
m is added at time i if it is true at time / but not at time / — 1.
m o is first added at time / if it is true at time /
but not at any time j < /.
We denote this i by first(p,).

last(p,) denotes the last time in which ¢ is added in 7.

Landmark Orderings

[e]e]e]e]e] lele)

Landmark Orderings

Definition (Landmark Orderings)

Let ¢ and v be formula landmarks. There is

m a natural ordering between ¢ and ¢ (written © — 1))
if in each plan 7 it holds that first(p,) < first(¢y),).
“io must be true some time strictly before 1) is first added.”

y

Not covered: reasonable orderings, which generalize weak orderings

Landmark Orderings andmark Pra gatio Landmark-count Heuristic Summary

[e]e]e]e]e] lele) [e]

Landmark Orderings

Definition (Landmark Orderings)

Let ¢ and v be formula landmarks. There is

m a natural ordering between ¢ and ¢ (written © — 1))
if in each plan 7 it holds that first(p,) < first(¢y),).
“io must be true some time strictly before 1) is first added.”

m a greedy-necessary ordering between ¢ and v (written
@ —rgn 1) if for every plan m = (o1, ..., 0n) it holds that

s[{o1, - - -, Ofirst(w,m)-1)] = -
“ must be true immediately before v is first added.”

y

Not covered: reasonable orderings, which generalize weak orderings

Landmark Orderings andmark Propagatiol Summary

[e]e]e]e]e] lele)

Landmark Orderings

Definition (Landmark Orderings)

Let ¢ and v be formula landmarks. There is

m a natural ordering between ¢ and ¢ (written © — 1))
if in each plan 7 it holds that first(p,) < first(¢y),).
“io must be true some time strictly before 1) is first added.”

m a greedy-necessary ordering between ¢ and v (written
@ —rgn 1) if for every plan m = (o1, ..., 0n) it holds that
s[(o1, - - - ; Ofirst(y,m)-1)] = -

“ must be true immediately before v is first added.”

m a weak ordering between ¢ and v (written © —, 1))
if in each plan 7 it holds that first(p, m) < last(y), 7).
“© must be true some time before v is last added.”

y

Not covered: reasonable orderings, which generalize weak orderings

Landmark Orderings a o k-count Heuristic Summar

00000080

Natural Orderings

Definition

There is a natural ordering between ¢ and ¢ (written ¢ —) if in
each plan 7 it holds that first(¢, 7) < first(y), 7).

m We can directly determine natural orderings from the LM sets
computed from the simplified relaxed task graph.

m For fact landmarks v, v/ with v # V/,
if n,, € LM(n,) then v/ — v.

ark-count Heuristic Summar

Landmark Orderings
0000000@

Greedy-necessary Orderings

Definition

There is a greedy-necessary ordering between ¢ and ¢
(written ¢ —¢ 1)) if in each plan where) is first added at time i,
p is true at time j — 1.

m We can again determine such orderings from the sRTG.

m For an OR node n,, we define the set of first achievers as
FA(n,) = {no | no € succ(n,) and n, & LM(n,)}.

m Then v/ —g, v if n, € succ(n,) for all n, € FA(ny).

Landmark Propagation

©0000000000000

Landmark Propagation

k Orderings Landmark Propagation

O@000000000000

Example Revisited

Consider task ({a, b,c,d},l,{o1,02,...,0n},d) with
m/(v)= L forve{ab,cd}
mo; =(T,aAb)and op = (a,c A —a A —b) (plus some more).

You know that a, b, c and d are all fact landmarks for /.

m What landmarks are still required to be made true in state
IT{01,02)]? All not achieved yet on the state path

m You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
Exploit orderings to determine landmarks that are still
required.

k Orderings Landmark Propagation

O@000000000000

Example Revisited

Consider task ({a, b,c,d},l,{o1,02,...,0n},d) with
m/(v)= L forve{ab,cd}
mo; =(T,aAb)and op = (a,c A —a A —b) (plus some more).

You know that a, b, c and d are all fact landmarks for /.

m What landmarks are still required to be made true in state
IT{01,02)]? All not achieved yet on the state path

m You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
Exploit orderings to determine landmarks that are still
required.

m There is another path to the same state where b was never
true. What now?

k Orderings Landmark Propagation

O@000000000000

Example Revisited

Consider task ({a, b,c,d},l,{o1,02,...,0n},d) with
m/(v)= L forve{ab,cd}
mo; =(T,aAb)and op = (a,c A —a A —b) (plus some more).

You know that a, b, c and d are all fact landmarks for /.

m What landmarks are still required to be made true in state
IT{01,02)]? All not achieved yet on the state path

m You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
Exploit orderings to determine landmarks that are still
required.

m There is another path to the same state where b was never
true. What now?
Exploit information from multiple paths.

k Orderings Landmark Propagation Landmark-count Heuristic Summar

00@00000000000 0000«

Past and Future Landmarks

m In the following, L; is always a set of formula landmarks for
the initial state with set of orderings O;.

Landmark Propagation Summar

00@00000000000

Past and Future Landmarks

m In the following, L; is always a set of formula landmarks for
the initial state with set of orderings O;.

m The set L£,(s) of past landmarks of a state s
contains all landmarks from £, that are
at some point true in every path from the initial state to s.

Landmark Propagation k-count Heuristic Summar

00@00000000000

Past and Future Landmarks

m In the following, L; is always a set of formula landmarks for
the initial state with set of orderings O;.

m The set L£,(s) of past landmarks of a state s
contains all landmarks from £, that are
at some point true in every path from the initial state to s.

m The set L5 . (s) of future landmarks of a state s

contains all landmarks from £, that are also
landmarks of s but not true in s.

Landmark Propagation Lal k-count Heuristic

00@00000000000

Past and Future Landmarks

m In the following, L; is always a set of formula landmarks for
the initial state with set of orderings O;.

m The set L£,(s) of past landmarks of a state s
contains all landmarks from £, that are
at some point true in every path from the initial state to s.

m The set L5 . (s) of future landmarks of a state s
contains all landmarks from £, that are also
landmarks of s but not true in s.

m Past landmarks are important for inferring which orderings are
still relevant, future landmarks are relevant for the heuristic
estimates.

00@00000000000

k Orderings Landmark Propagation a k-count Heuristic

Past and Future Landmarks

m In the following, L; is always a set of formula landmarks for
the initial state with set of orderings O;.

m The set L£,(s) of past landmarks of a state s
contains all landmarks from £, that are
at some point true in every path from the initial state to s.

m The set L5 . (s) of future landmarks of a state s
contains all landmarks from £, that are also
landmarks of s but not true in s.

m Past landmarks are important for inferring which orderings are
still relevant, future landmarks are relevant for the heuristic
estimates.

m Since the exact sets are defined over all paths
between certain states, we use approximations.

Landmark Propagation andmark-count Heuristic
000@0000000000 000000

Landmark State

Definition
Let £, be a set of formula landmarks for the initial state.

A landmark state L is L or a pair (Lpast, Lfut) such that
Efut U £past = £l-

Summar

k Orderings Landmark Propagation andmark-count Heuristic
00 000@0000000000 000000

Landmark State

Definition
Let £, be a set of formula landmarks for the initial state.
A landmark state L is L or a pair (Lpast, Lfut) such that
Efut U £past = £l-
L is valid in state s if

m L =1 and Il has no s-plan, or

m L = (Lpast, Lrut) With Lpast 2 L3, and Lo C L5,

Orderings Landmark Propagation a k-count Heuristic
o} 0000@000000000 ocC

Context in Search: LM-BFS Algorithm

L(init), £y, O := compute_landmark_info(init())
if h(init(), L(init)) < co then
open.insert((init(), 0, h(init(), L(init))))
while open # () do
(s,g,v) = open.pop()
if v < h(s,L(s)) then
open.insert((s, g, h(s,L(s))))
else if g < distances(s) then
distances(s) :== g
if is_goal(s) then return extract_plan(s);
foreach (a,s’) € succ(s) do
L’ := progress_landmark_state(IL(s), (s, a,s"))
L(s") :=merge_landmark_states(L(s"), L")
if L(s") # L and h(s',L(s")) < oo then
open.insert((s’, g + cost(a), h(s’,1L(s")))

LL(s) := (£;,0) and distances(s) := oo if read before set.

Orderings Landmark Propagation andmark-count Heuristic
O 0000080000000 0 ocC)OO0

Context: Exploit Information from Multiple Paths

L(init), £y, O := compute_landmark_info(init())
if h(init(), L(init)) < co then
open.insert((init(), 0, h(init(), L(init))))
while open # () do
(s,g,v) = open.pop()
if v < h(s,L(s)) then
open.insert((s, g, h(s,L(s))))
else if g < distances(s) then
distances(s) :== g
if is_goal(s) then return extract_plan(s);
foreach (a,s’) € succ(s) do
L’ := progress_landmark_state(IL(s), (s, a,s"))
L(s") :=merge_landmark_states(L(s"), 1)
if L(s") # L and h(s',L(s")) < oo then
open.insert((s’, g + cost(a), h(s’,1L(s")))

LL(s) := (£;,0) and distances(s) := oo if read before set.

0O00000@0000000

k C (')y dering Landmark Propagation L anc Jm nL ount Heuristic

I\/Ierglng Landmark States

Merging combines the information from two landmark states.

merge_landmark_states(L, L")

if L=_1 orL/ = 1 then return L;
<»Cpast7 Efut) =L

<£;ast7 fut> =L
return (Lpast N Liage, Loue U Loy

If L and I are valid in a state s then also
merge_landmark_states(LL, L") is valid in s.

Orderings Landmark Propagation andmark-count Heuristic

0000000 e000000

Context: Progression for a Transition

L(init), £y, O := compute_landmark_info(init())
if h(init(), L(init)) < co then
open.insert((init(), 0, h(init(), L(init))))
while open # () do
(s,g,v) = open.pop()
if v < h(s,L(s)) then
open.insert((s, g, h(s,L(s))))
else if g < distances(s) then
distances(s) :== g
if is_goal(s) then return extract_plan(s);
foreach (a,s’) € succ(s) do
L’ := progress_landmark_state(IL(s), (s, a,s"))
L(s") :=merge_landmark_states(L(s"), L")
if L(s") # L and h(s',L(s")) < oo then
open.insert((s’, g + cost(a), h(s’,1L(s")))

LL(s) := (£;,0) and distances(s) := oo if read before set.

k Orderings Landmark Propagation andmark-count Heuristic Summar

0O0000000e00000

Progressing Landmark States

m If we expand a state s with transition (s, 0,s’),
we use progression to determine a landmark state for s’
from the one we know for s.

Landmark Propagation k-count Heuristic Summar

0O0000000e00000

Progressing Landmark States

m If we expand a state s with transition (s, 0,s’),
we use progression to determine a landmark state for s’
from the one we know for s.

m We will only introduce progression methods that preserve the
validity of landmark states.

Landmark Propagation Lal k-count Heuristic

0O0000000e00000

Progressing Landmark States

m If we expand a state s with transition (s, 0,s’),
we use progression to determine a landmark state for s’
from the one we know for s.

m We will only introduce progression methods that preserve the
validity of landmark states.

m Since every progression state gives a valid landmark state,
we can merge results from different methods into a valid
landmark state.

Landmark Propagation k-count Heuristic Summar

0000000008000 0

Basic Progression

Definition (Basic Progression)

Basic progression maps landmark state (Lpast, Lsut) and transition
(s,0,s') to landmark state (Lpast U Ladd; Lut \ Ladd), Where

Lagd ={p€L)|slpands E oy}

“Extend the past with all landmarks added in s’ and
remove them from the future.”

k Orderings Landmark Propagation

0000000000800 0

Goal Progression

Definition (Goal Progression)

Let v be the goal of the task.
Goal progression maps landmark state (Lpast, L5yt) and transition
(s,0,s’) to landmark state (L, Lgoal), Where

Looal ={p € L1 |7 pand s’ [~ o}

“All landmarks that must be true in the goal but are false in s’
must be achieved in the future.”

Landmark Propagation L and Jm nL ount Heuristic

00000000000 e00

Weak Orderlng Progression

© —w ¥ " must be true some time before 1) is last added.”

Definition (Weak Ordering Progression)

The weak ordering progression maps landmark state (Lpast, Leut)
and transition (s, 0,s’) to landmark state

(Lr A | Jp =w b 1 0 & Lpast})-

“Landmark ¢ must be added in the future because we haven't
done something that must be done before v is last added.”

< Orderings Landmark Propagation

00000000000 0e0

Greedy-necessary Ordering Progression

© —+gn ¥: “p must be true immediately before v is first added.”

Definition (Greedy-necessary Ordering Progression)
The greedy necessary ordering progression maps landmark state
(Lpast, Lsut) and transition (s, 0,s’) to landmark state
m L if thereis a ¢ —gn ¥ € O) with ¢ & Lpast, s = ¢ and
s’ E 1, and
m (L, {p|sEpand Jp 2P € O Y & Lpast, s = ¢})
otherwise.)

“Landmark % has not been true, yet, and ¢ must be true
immediately before it becomes true. Since ¢ is currently false,
we must make it true in the future (before making v true).”

1ark Orderings Landmark Propagation Landmark-count Heuristic Summar

0000000000000 0000«

Natural Ordering Progression

© — 1. @ must be true some time strictly before v is first added.

Definition (Natural Ordering Progression)

The natural ordering progression maps landmark state (Lpast, Lsut)
and transition (s, 0,s’) to landmark state

m L if thereis a ¢ — ¢ € Oy with ¢ & Ljaet and s’ = ¢, and
m (L;,0) otherwise.

Not (yet) useful: All known methods only find natural orderings
that are true for every applicable operator sequence, so the
interesting first case never happens in LM-BFS.

Landmark-count Heuristic

®00000

L andmark-count Heuristic

Landmark-count Heuristic
0®0000

Content of this Course

—I Prelude | -

RTG
Landmarks

-——I Delete Relaxation |

i
—I Foundations | Partitioning &
—I Approaches |_ Post-Hoc
Optimization
| | Network || MHS
Flows Heuristic
—I Abstraction |
|| Operator || Cut
—I Critical Paths | Counting Landmarks
-_ Potential LM-Cut
Heuristics Heuristic

[e]e] le]e]e]

Landmark-count Heuristic Summar

Landmark-count Heuristic

The landmark-count heuristic counts the landmarks that still have
to be achieved.

Definition (LM-count Heuristic)

Let I be a planning task, s be a state and L. = (Lpast, Lrut) be a
valid landmark state for s.

The LM-count heuristic for s and L is

hLM—count(S]L) _ o0 if L= 1,
’ |Lyt| otherwise

In the original work, L, was determined without considering
information from multiple paths and could not detect dead-ends.

Landmark-count Heuristic Summar
000800 00

LM-count Heuristic is Path-dependent

m LM-count heuristic gives estimates for landmark states,
which depend on the considered paths.

m Search algorithms need estimates for states.
m ~ we use estimate from the current landmark state.

m ~ heuristic estimate for a state is not well-defined.

rk Orderings and gatiol Landmark-count Heuristic Summary

[e]e]e]e] Jo]

LM-count Heuristic is Inadmissible

Consider STRIPS planning task N = ({a, b}, I, {0}, {a, b}) with
I=0,0=(0,{a,b},0,1). Let L ={a,b} and O =0).

Landmark state ((), £) for the initial state is valid and the estimate
is hLM—count(/’ <®’ {a, b}>) =9
while h*(1) = 1.

~s pEM-count o inadmissible.

O0000e

k Orderings La o Landmark-count Heuristic

LM-count Heuristic: Comments

m LM-Count alone is not a particularily informative heuristic.

hFF

m On the positive side, it complements very well.

m For example, the LAMA planning system alternates between
expanding a state with minimal hFF and minimal pLM-count
estimate.

m There is an admissible variant of the heuristic based on
operator cost partitioning.

Summarn
0

Summary

k-count Heuristic Summary
) o

Summary

We can propagate landmark sets over action applications.

m Landmark orderings can be useful for detecting when a
landmark that has already been achieved should be further
considered.

m We can combine the landmark information from several paths
to the same state.

m The LM-count heuristic counts how many landmarks still need
to be satisfied.

m The LM-count heuristic is inadmissible (but there is an
admissible variant).

	Landmark Orderings
	

	Landmark Propagation
	

	Landmark-count Heuristic
	

	Summary
	

