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Why Landmark Orderings?

To compute a landmark heuristic estimate for state s
we need landmarks for s.

We could invest the time to compute them
for every state from scratch.

Alternatively, we can compute landmarks once and
propagate them over operator applications.

Landmark orderings are used to detect landmarks that should
be further considered because they (again) need to be
satisfied later.

(We will later see yet another approach, where heuristic
computation and landmark computation are integrated ~~ LM-Cut.)



Landmark Orderings

[e]e]e] le]elele)

Example

Consider task ({a, b, c,d},I,{01,02,...,0,},d) with
m/(v)=_Lforve{abcd}
m oy =(T,aAb), and

m 0p = (a,c A —a A —b) (plus some more operators).

You know that a, b, ¢ and d are all fact landmarks for /.

m What landmarks are still required to be made true in state
I[(o1, 02)]?
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Example

Consider task ({a, b, c,d},I,{01,02,...,0,},d) with
m/(v)=_Lforve{abcd}
m oy =(T,aAb), and

m 0p = (a,c A —a A —b) (plus some more operators).

You know that a, b, ¢ and d are all fact landmarks for /.

m What landmarks are still required to be made true in state
I[(o1, 02)]?

m You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
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Terminology

Let 7 = (o1,...,0pn) be a sequence of operators applicable in
state / and let ¢ be a formula over the state variables.
m o is true at time 7 if I[{o1,...,0)] E ¢.
m Also special case i = 0: ¢ is true at time 0 if | |= ¢.
m No formula is true at time i < 0.
m  is added at time i if it is true at time / but not at time / — 1.
m o is first added at time / if it is true at time /
but not at any time j < /.
We denote this i by first(p, ).

last(p, ) denotes the last time in which ¢ is added in 7.
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Landmark Orderings

Definition (Landmark Orderings)

Let ¢ and v be formula landmarks. There is

m a natural ordering between ¢ and ¢ (written © — 1))
if in each plan 7 it holds that first(p, ) < first(¢y), ).
“io must be true some time strictly before 1) is first added.”

y

Not covered: reasonable orderings, which generalize weak orderings
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Landmark Orderings

Definition (Landmark Orderings)

Let ¢ and v be formula landmarks. There is

m a natural ordering between ¢ and ¢ (written © — 1))
if in each plan 7 it holds that first(p, ) < first(¢y), ).
“io must be true some time strictly before 1) is first added.”

m a greedy-necessary ordering between ¢ and v (written
@ —rgn 1) if for every plan m = (o1, ..., 0n) it holds that

s[{o1, - - -, Ofirst(w,m)-1)] = -
“ must be true immediately before v is first added.”

y

Not covered: reasonable orderings, which generalize weak orderings
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Landmark Orderings

Definition (Landmark Orderings)

Let ¢ and v be formula landmarks. There is

m a natural ordering between ¢ and ¢ (written © — 1))
if in each plan 7 it holds that first(p, ) < first(¢y), ).
“io must be true some time strictly before 1) is first added.”

m a greedy-necessary ordering between ¢ and v (written
@ —rgn 1) if for every plan m = (o1, ..., 0n) it holds that
s[(o1, - - - ; Ofirst(y,m)-1)] = -

“ must be true immediately before v is first added.”

m a weak ordering between ¢ and v (written © —, 1))
if in each plan 7 it holds that first(p, m) < last(y), 7).
“© must be true some time before v is last added.”

y

Not covered: reasonable orderings, which generalize weak orderings
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Natural Orderings

Definition

There is a natural ordering between ¢ and ¢ (written ¢ — ) if in
each plan 7 it holds that first(¢, 7) < first(y), 7).

m We can directly determine natural orderings from the LM sets
computed from the simplified relaxed task graph.

m For fact landmarks v, v/ with v # V/,
if n,, € LM(n,) then v/ — v.
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Greedy-necessary Orderings

Definition

There is a greedy-necessary ordering between ¢ and ¢
(written ¢ —¢ 1)) if in each plan where ) is first added at time i,
p is true at time j — 1.

m We can again determine such orderings from the sRTG.

m For an OR node n,, we define the set of first achievers as
FA(n,) = {no | no € succ(n,) and n, & LM(n,)}.

m Then v/ —g, v if n, € succ(n,) for all n, € FA(ny).
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Example Revisited

Consider task ({a, b,c,d},l,{o1,02,...,0n},d) with
m/(v)= L forve{ab,cd}
mo; =(T,aAb)and op = (a,c A —a A —b) (plus some more).

You know that a, b, c and d are all fact landmarks for /.

m What landmarks are still required to be made true in state
IT{01,02)]? All not achieved yet on the state path

m You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
Exploit orderings to determine landmarks that are still
required.
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Example Revisited

Consider task ({a, b,c,d},l,{o1,02,...,0n},d) with
m/(v)= L forve{ab,cd}
mo; =(T,aAb)and op = (a,c A —a A —b) (plus some more).

You know that a, b, c and d are all fact landmarks for /.

m What landmarks are still required to be made true in state
IT{01,02)]? All not achieved yet on the state path

m You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
Exploit orderings to determine landmarks that are still
required.

m There is another path to the same state where b was never
true. What now?
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Example Revisited

Consider task ({a, b,c,d},l,{o1,02,...,0n},d) with
m/(v)= L forve{ab,cd}
mo; =(T,aAb)and op = (a,c A —a A —b) (plus some more).

You know that a, b, c and d are all fact landmarks for /.

m What landmarks are still required to be made true in state
IT{01,02)]? All not achieved yet on the state path

m You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
Exploit orderings to determine landmarks that are still
required.

m There is another path to the same state where b was never
true. What now?
Exploit information from multiple paths.
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Past and Future Landmarks

m In the following, L; is always a set of formula landmarks for
the initial state with set of orderings O;.
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Past and Future Landmarks

m In the following, L; is always a set of formula landmarks for
the initial state with set of orderings O;.

m The set L£,(s) of past landmarks of a state s
contains all landmarks from £, that are
at some point true in every path from the initial state to s.
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Past and Future Landmarks

m In the following, L; is always a set of formula landmarks for
the initial state with set of orderings O;.

m The set L£,(s) of past landmarks of a state s
contains all landmarks from £, that are
at some point true in every path from the initial state to s.

m The set L5 . (s) of future landmarks of a state s

contains all landmarks from £, that are also
landmarks of s but not true in s.
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Past and Future Landmarks

m In the following, L; is always a set of formula landmarks for
the initial state with set of orderings O;.

m The set L£,(s) of past landmarks of a state s
contains all landmarks from £, that are
at some point true in every path from the initial state to s.

m The set L5 . (s) of future landmarks of a state s
contains all landmarks from £, that are also
landmarks of s but not true in s.

m Past landmarks are important for inferring which orderings are
still relevant, future landmarks are relevant for the heuristic
estimates.
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Past and Future Landmarks

m In the following, L; is always a set of formula landmarks for
the initial state with set of orderings O;.

m The set L£,(s) of past landmarks of a state s
contains all landmarks from £, that are
at some point true in every path from the initial state to s.

m The set L5 . (s) of future landmarks of a state s
contains all landmarks from £, that are also
landmarks of s but not true in s.

m Past landmarks are important for inferring which orderings are
still relevant, future landmarks are relevant for the heuristic
estimates.

m Since the exact sets are defined over all paths
between certain states, we use approximations.
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Landmark State

Definition
Let £, be a set of formula landmarks for the initial state.

A landmark state L is L or a pair (Lpast, Lfut) such that
Efut U £past = £l-

Summar
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Landmark State

Definition
Let £, be a set of formula landmarks for the initial state.
A landmark state L is L or a pair (Lpast, Lfut) such that
Efut U £past = £l-
L is valid in state s if

m L =1 and Il has no s-plan, or

m L = (Lpast, Lrut) With Lpast 2 L3, and Lo C L5,
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Context in Search: LM-BFS Algorithm

L(init), £y, O := compute_landmark_info(init())
if h(init(), L(init)) < co then
open.insert((init(), 0, h(init(), L(init))))
while open # () do
(s,g,v) = open.pop()
if v < h(s,L(s)) then
open.insert((s, g, h(s,L(s))))
else if g < distances(s) then
distances(s) :== g
if is_goal(s) then return extract_plan(s);
foreach (a,s’) € succ(s) do
L’ := progress_landmark_state(IL(s), (s, a,s"))
L(s") :=merge_landmark_states(L(s"), L")
if L(s") # L and h(s',L(s")) < oo then
open.insert((s’, g + cost(a), h(s’,1L(s")))

LL(s) := (£;,0) and distances(s) := oo if read before set.
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Context: Exploit Information from Multiple Paths

L(init), £y, O := compute_landmark_info(init())
if h(init(), L(init)) < co then
open.insert((init(), 0, h(init(), L(init))))
while open # () do
(s,g,v) = open.pop()
if v < h(s,L(s)) then
open.insert((s, g, h(s,L(s))))
else if g < distances(s) then
distances(s) :== g
if is_goal(s) then return extract_plan(s);
foreach (a,s’) € succ(s) do
L’ := progress_landmark_state(IL(s), (s, a,s"))
L(s") :=merge_landmark_states(L(s"), 1)
if L(s") # L and h(s',L(s")) < oo then
open.insert((s’, g + cost(a), h(s’,1L(s")))

LL(s) := (£;,0) and distances(s) := oo if read before set.
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I\/Ierglng Landmark States

Merging combines the information from two landmark states.

merge_landmark_states(L, L")

if L=_1 orL/ = 1 then return L;
<»Cpast7 Efut) =L

<£;ast7 fut> =L
return (Lpast N Liage, Loue U Loy

If L and I are valid in a state s then also
merge_landmark_states(LL, L") is valid in s.
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Context: Progression for a Transition

L(init), £y, O := compute_landmark_info(init())
if h(init(), L(init)) < co then
open.insert((init(), 0, h(init(), L(init))))
while open # () do
(s,g,v) = open.pop()
if v < h(s,L(s)) then
open.insert((s, g, h(s,L(s))))
else if g < distances(s) then
distances(s) :== g
if is_goal(s) then return extract_plan(s);
foreach (a,s’) € succ(s) do
L’ := progress_landmark_state(IL(s), (s, a,s"))
L(s") :=merge_landmark_states(L(s"), L")
if L(s") # L and h(s',L(s")) < oo then
open.insert((s’, g + cost(a), h(s’,1L(s")))

LL(s) := (£;,0) and distances(s) := oo if read before set.
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Progressing Landmark States

m If we expand a state s with transition (s, 0,s’),
we use progression to determine a landmark state for s’
from the one we know for s.
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Progressing Landmark States

m If we expand a state s with transition (s, 0,s’),
we use progression to determine a landmark state for s’
from the one we know for s.

m We will only introduce progression methods that preserve the
validity of landmark states.
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Progressing Landmark States

m If we expand a state s with transition (s, 0,s’),
we use progression to determine a landmark state for s’
from the one we know for s.

m We will only introduce progression methods that preserve the
validity of landmark states.

m Since every progression state gives a valid landmark state,
we can merge results from different methods into a valid
landmark state.
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Basic Progression

Definition (Basic Progression)

Basic progression maps landmark state (Lpast, Lsut) and transition
(s,0,s') to landmark state (Lpast U Ladd; Lut \ Ladd), Where

Lagd ={p€L)|slpands E oy}

“Extend the past with all landmarks added in s’ and
remove them from the future.”
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Goal Progression

Definition (Goal Progression)

Let v be the goal of the task.
Goal progression maps landmark state (Lpast, L5yt) and transition
(s,0,s’) to landmark state (L, Lgoal), Where

Looal ={p € L1 |7 pand s’ [~ o}

“All landmarks that must be true in the goal but are false in s’
must be achieved in the future.”
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Weak Orderlng Progression

© —w ¥ " must be true some time before 1) is last added.”

Definition (Weak Ordering Progression)

The weak ordering progression maps landmark state (Lpast, Leut)
and transition (s, 0,s’) to landmark state

(Lr A | Jp =w b 1 0 & Lpast})-

“Landmark ¢ must be added in the future because we haven't
done something that must be done before v is last added.”
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Greedy-necessary Ordering Progression

© —+gn ¥: “p must be true immediately before v is first added.”

Definition (Greedy-necessary Ordering Progression)
The greedy necessary ordering progression maps landmark state
(Lpast, Lsut) and transition (s, 0,s’) to landmark state
m L if thereis a ¢ —gn ¥ € O) with ¢ & Lpast, s = ¢ and
s’ E 1, and
m (L, {p|sEpand Jp 2P € O Y & Lpast, s = ¢})
otherwise. )

“Landmark % has not been true, yet, and ¢ must be true
immediately before it becomes true. Since ¢ is currently false,
we must make it true in the future (before making v true).”
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Natural Ordering Progression

© — 1. @ must be true some time strictly before v is first added.

Definition (Natural Ordering Progression)

The natural ordering progression maps landmark state (Lpast, Lsut)
and transition (s, 0,s’) to landmark state

m L if thereis a ¢ — ¢ € Oy with ¢ & Ljaet and s’ = ¢, and
m (L;,0) otherwise.

Not (yet) useful: All known methods only find natural orderings
that are true for every applicable operator sequence, so the
interesting first case never happens in LM-BFS.
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Landmark-count Heuristic

The landmark-count heuristic counts the landmarks that still have
to be achieved.

Definition (LM-count Heuristic)

Let I be a planning task, s be a state and L. = (Lpast, Lrut) be a
valid landmark state for s.

The LM-count heuristic for s and L is

hLM—count(S ]L) _ o0 if L= 1,
’ |Lyt| otherwise

In the original work, L, was determined without considering
information from multiple paths and could not detect dead-ends.
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LM-count Heuristic is Path-dependent

m LM-count heuristic gives estimates for landmark states,
which depend on the considered paths.

m Search algorithms need estimates for states.
m ~ we use estimate from the current landmark state.

m ~ heuristic estimate for a state is not well-defined.
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LM-count Heuristic is Inadmissible

Consider STRIPS planning task N = ({a, b}, I, {0}, {a, b}) with
I=0,0=(0,{a,b},0,1). Let L ={a,b} and O =0).

Landmark state ((), £) for the initial state is valid and the estimate
is hLM—count(/’ <®’ {a, b}>) =9
while h*(1) = 1.

~s pEM-count o inadmissible.
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LM-count Heuristic: Comments

m LM-Count alone is not a particularily informative heuristic.

hFF

m On the positive side, it complements very well.

m For example, the LAMA planning system alternates between
expanding a state with minimal hFF and minimal pLM-count
estimate.

m There is an admissible variant of the heuristic based on
operator cost partitioning.
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Summary
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Summary

We can propagate landmark sets over action applications.

m Landmark orderings can be useful for detecting when a
landmark that has already been achieved should be further
considered.

m We can combine the landmark information from several paths
to the same state.

m The LM-count heuristic counts how many landmarks still need
to be satisfied.

m The LM-count heuristic is inadmissible (but there is an
admissible variant).
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