Planning and Optimization

G3. Landmarks: Orderings & LM-Count Heuristic

Malte Helmert and Gabriele Roger

Universitat Basel

December 4, 2023

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

December 4, 2023

1/32

Planning and Optimization

December 4, 2023 — G3. Landmarks: Orderings & LM-Count Heuristic

G3.1 Landmark Orderings

G3.2 Landmark Propagation

G3.3 Landmark-count Heuristic

G3.4 Summary

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

December 4, 2023

2/32

G3. Landmarks: Orderings & LM-Count Heuristic

G3.1 Landmark Orderings

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Landmark Orderings

December 4, 2023

3/32

G3. Landmarks: Orderings & LM-Count Heuristic

Content of this Course

Landmark Orderings

-——I Delete Relaxation |

L k
—I Prelude | EICIELLE
| partoning | |~ IIOREHE
—I Foundations | Partitioning
—I Approaches |_ POISt'_HO_C | | LM-Count
Optimization Heuristic
| | Network || MHS
Flows Heuristic
—I Abstraction |
| | Operator | Cut
—I Critical Paths | Counting Landmarks
-_ Potential L LM-Cut
Heuristics Heuristic

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

December 4, 2023

4/32

G3. Landmarks: Orderings & LM-Count Heuristic

Why Landmark Orderings?

Landmark Orderings

» To compute a landmark heuristic estimate for state s
we need landmarks for s.

» We could invest the time to compute them
for every state from scratch.

> Alternatively, we can compute landmarks once and
propagate them over operator applications.

» Landmark orderings are used to detect landmarks that should
be further considered because they (again) need to be
satisfied later.

P (We will later see yet another approach, where heuristic
computation and landmark computation are integrated ~ LM-Cut.)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023 5 /32

G3. Landmarks: Orderings & LM-Count Heuristic

Example

Consider task ({a, b,c,d},l,{01,02,...,0n},d) with
» [(v) =1 forve{ab,cd}
» o1 =(T,aAb), and
» 0y = (a,c A—a A —b) (plus some more operators).

You know that a, b, ¢ and d are all fact landmarks for /.

» What landmarks are still required to be made true in state
/[[<01, 02>]]?

» You get the additional information that variable a must be
true immediately before d is first made true. Any changes?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023

Landmark Orderings

6 /32

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Orderings

Terminology

Let 7 = (01,...,0pn) be a sequence of operators applicable in
state / and let ¢ be a formula over the state variables.

> o is true at time i if I[(o1,...,0)] F ¢.
Also special case i = 0: ¢ is true at time 0 if / |= .

>

» No formula is true at time i < 0.

P> ¢ is added at time i if it is true at time / but not at time / — 1.
>

@ is first added at time / if it is true at time /
but not at any time j < /.
We denote this i by first(p, 7).

v

last(, 7) denotes the last time in which ¢ is added in 7.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023 7/ 32

G3. Landmarks: Orderings & LM-Count Heuristic

Landmark Orderings

Definition (Landmark Orderings)
Let ¢ and % be formula landmarks. There is

> a natural ordering between ¢ and 1) (written p — 1))
if in each plan 7 it holds that first(p, 7) < first(¢), 7).
"o must be true some time strictly before 1 is first added.”

> a greedy-necessary ordering between ¢ and v (written
© —rgn 1) if for every plan m = (01, ..., 0,) it holds that
S[[<Olv) Oﬁrst(l/),ﬂ)—l)]]): P-
"o must be true immediately before ¢ is first added.”

> a weak ordering between ¢ and v (written ¢ —, 1))
if in each plan 7 it holds that first(p,) < last(,).
"o must be true some time before v is last added.”

Not covered: reasonable orderings, which generalize weak orderings

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023

Landmark Orderings

8 /32

G3. Landmarks: Orderings & LM-Count Heuristic

Natural Orderings

Definition
There is a natural ordering between ¢ and ¢ (written ¢ —) if in
each plan 7 it holds that first(yp, m) < first(v, 7).

» We can directly determine natural orderings from the LM sets
computed from the simplified relaxed task graph.

» For fact landmarks v, v/ with v # v/,
if n,, € LM(n,) then v/ — v.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023

Landmark Orderings

/ 32

G3. Landmarks: Orderings & LM-Count Heuristic

Greedy-necessary Orderings

Definition

There is a greedy-necessary ordering between ¢ and 1

(written ¢ —4, ¢0) if in each plan where v is first added at time i,
@ is true at time / — 1.

» We can again determine such orderings from the sRTG.

» For an OR node n,, we define the set of first achievers as
FA(ny,) = {no | no € succ(n,) and n, & LM(n,)}.

> Then v/ —gn v if ny € succ(n,) for all n, € FA(ny).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023

Landmark Orderings

10 / 32

G3. Landmarks: Orderings & LM-Count Heuristic

G3.2 Landmark Propagation

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023

11/

Landmark Propagation

G3. Landmarks: Orderings & LM-Count Heuristic

Example Revisited

Consider task ({a, b,c,d},l,{o1,02,...,0n},d) with
» I(v) =1 forve{ab,c,d}
» o =(T,aAb)and 0 = (a,c A —a A —b) (plus some more).

You know that a, b, ¢ and d are all fact landmarks for /.

» What landmarks are still required to be made true in state
IT{o1, 02)]? All not achieved yet on the state path

» You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
Exploit orderings to determine landmarks that are still
required.

P There is another path to the same state where b was never
true. What now?
Exploit information from multiple paths.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023

Landmark Propagation

12 / 32

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Past and Future Landmarks

» In the following, £, is always a set of formula landmarks for
the initial state with set of orderings O;.

> The set L;,(s) of past landmarks of a state s
contains all landmarks from £; that are
at some point true in every path from the initial state to s.

» The set L; . (s) of future landmarks of a state s
contains all landmarks from £; that are also
landmarks of s but not true in s.

> Past landmarks are important for inferring which orderings are
still relevant, future landmarks are relevant for the heuristic
estimates.

> Since the exact sets are defined over all paths
between certain states, we use approximations.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023 13 / 32

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Landmark State

Definition
Let £, be a set of formula landmarks for the initial state.

A landmark state L is L or a pair (Lpast, Lsut) such that
['fut U 'Cpast = El-

L is valid in state s if
» I = 1 and I has no s-plan, or
> L= <£pasta£fut> with ﬁpast) ‘C;ast and Lg € EFut'

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023 14 / 32

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Context in Search: LM-BFS Algorithm

L(init), £/, O; := compute_landmark_info(init())
if h(init(), L(init)) < co then
open.insert((init(), 0, h(init(), L(init))))
while open # () do
(s,g,v) = open.pop()
if v < h(s,L(s)) then
open.insert((s, g, h(s,1L(s))))
else if g < distances(s) then
distances(s) := g
if is_goal(s) then return extract_plan(s);
foreach (a,s’) € succ(s) do
I’ := progress_landmark_state(IL(s), (s, a, s))
L(s") :=merge_landmark_states(L(s"), L")
if L(s") # L and h(s',L(s")) < oo then
open.insert((s’, g + cost(a), h(s',L(s")))

L(s) := (L;,0) and distances(s) := o if read before set.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023 15 / 32

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Context: Exploit Information from Multiple Paths

L(init), £/, O; := compute_landmark_info(init())
if h(init(), L(init)) < co then
open.insert((init(), 0, h(init(), L(init))))
while open # () do
<57 & V> = Open'pOP()
if v < h(s,LL(s)) then
open.insert((s, g, h(s,1L(s))))
else if g < distances(s) then
distances(s) := g
if is_goal(s) then return extract_plan(s);
foreach (a,s’) € succ(s) do
I’ := progress_landmark_state(IL(s), (s, a, s'))
IL(s’) :=merge_landmark_states(LL(s’), L")
if L(s") # L and h(s',L(s")) < oo then
open.insert((s’, g + cost(a), h(s’,L(s")))

L(s) := (£;,0) and distances(s) := oo if read before set.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023 16 / 32

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Merging Landmark States Context: Progression for a Transition

L(init), £/, O; := compute_landmark_info(init())
. . . . if h(init(),L(init)) < co then
Merging combines the information from two landmark states. open.insert((init(), 0, h(init(), L(init))))

merge_landmark_states(IL, L") while open # () do

if L=_1 or' = 1 then return L; .<S,g, v) = open.pop()
(Lpast, Lsut) =1L if v < h(_S,]L(s)) then
(A)= L open.insert((s, g, h(s,1L(s))))

past’ ~fut else if distances(s) then
return (Lpast N Liase, Lur U L) distfn:es(s) = g()
if is_goal(s) then return extract_plan(s);
Theorem foreach (a.s’) € succ(s) do
If L and 1" are valid in a state s then also L’ := progress_landmark_state(L(s), (s, a, s"))
merge_landmark_states(IL, L") is valid in s. LL(s") :=merge_landmark_states(L(s’), L")

if L(s’) # L and h(s’,L(s")) < oo then
open.insert((s’, g + cost(a), h(s’,1L(s")))

L(s) := (L, 0) and distances(s) := oo if read before set.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023 17 / 32 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023 18 / 32
G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation
Progressing Landmark States Basic Progression
1 1+1 / -
> If we expand a §tate s with transmon (s,0,5), Definition (Basic Progression)
we use progression to determine a landmark state for s’ Basi . landmark r I d o
; the one we know for s asic progression maps landmark state (Lpast, Lsut) and transition
rom .
_ _ _ (s,0,s") to landmark state (Lpast U Ladd, Lsut \ Ladd), Where
> We will only introduce progression methods that preserve the Logd ={p€L)]|sEpands = o}

validity of landmark states.

> Since every progression state gives a valid landmark state,
we can merge results from different methods into a valid
landmark state.

“Extend the past with all landmarks added in s’ and
remove them from the future.”

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023 19 / 32 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023 20 / 32

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Goal Progression

Definition (Goal Progression)

Let v be the goal of the task.

Goal progression maps landmark state (Lpast, Lsut) and transition
(s,0,s") to landmark state (L, Lgoa1), Where

Looal = {0 €Ly |7 @and s [~}

“All landmarks that must be true in the goal but are false in s’
must be achieved in the future.”

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023 21 / 32

G3. Landmarks: Orderings & LM-Count Heuristic

Weak Ordering Progression

© —w ¥ “@ must be true some time before 1 is last added.”

Definition (Weak Ordering Progression)

The weak ordering progression maps landmark state (Lpast, Lut)
and transition (s, 0,s’) to landmark state

(L1AY | 3 —w ¥ 1 @ & Lpast})-

“Landmark 1 must be added in the future because we haven't
done something that must be done before 1 is last added.”

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023

Landmark Propagation

22 /32

G3. Landmarks: Orderings & LM-Count Heuristic Landmark Propagation

Greedy-necessary Ordering Progression

© —rgn ¥: “p must be true immediately before 1) is first added.”

Definition (Greedy-necessary Ordering Progression)
The greedy necessary ordering progression maps landmark state
(Lpast, Leyt) and transition (s, 0,s’) to landmark state
> L if thereis a ¢ —gn ¥ € O) with ¢ & Lpast, s = ¢ and
s' =1, and

> (L1, {p|s' FEpand 3p =gt € O 1) € Lpast, s’ = P})
otherwise.

“Landmark 1) has not been true, yet, and ¢ must be true
immediately before it becomes true. Since ¢ is currently false,
we must make it true in the future (before making v true).”

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023 23 / 32

G3. Landmarks: Orderings & LM-Count Heuristic

Natural Ordering Progression

@ — : must be true some time strictly before v is first added.

Definition (Natural Ordering Progression)
The natural ordering progression maps landmark state (Lpast, Lsut)
and transition (s, 0,s’) to landmark state
> | if thereisa p — ¢ € Oy with ¢ & Lpast and s” = 4, and
> (L;,0) otherwise.

Not (yet) useful: All known methods only find natural orderings
that are true for every applicable operator sequence, so the
interesting first case never happens in LM-BFS.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023

Landmark Propagation

24 / 32

G3. Landmarks: Orderings & LM-Count Heuristic

_{ Prelude ‘ Landmarks
Cost ;
. —{ Foundations ‘_ Partitioning
G3.3 Landmark-count Heuristic
—{ Approaches ‘_ Post-Hoc
Optimization
] Flows | Heuristic
—{ Abstraction ‘
|| Operator || Cut
—{ Critical Paths ‘ Counting Landmarks
-_ Potential || LM-Cut
Heuristics Heuristic

Landmark-count Heuristic

G3. Landmarks: Orderings & LM-Count Heuristic

Content of this Course

Landmark-count Heuristic

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023 25 / 32 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023 26 / 32

G3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

LM-count Heuristic is Path-dependent

G3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

Landmark-count Heuristic

The landmark-count heuristic counts the landmarks that still have
to be achieved.

Definition (LM-count Heuristic)

Let I be a planning task, s be a state and L = (Lpast, Lut) be a
valid landmark state for s.

» LM-count heuristic gives estimates for landmark states,
which depend on the considered paths.

» Search algorithms need estimates for states.

The LM-count heuristic for s and L is > ~> we use estimate from the current landmark state.

50 L= 1, » ~~ heuristic estimate for a state is not well-defined.

hLM—count s L) =
(s, L) |Leut| otherwise

In the original work, L, was determined without considering
information from multiple paths and could not detect dead-ends.

Planning and Optimization December 4, 2023 27 / 32 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023 28 / 32

M. Helmert, G. Roger (Universitat Basel)

G3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

LM-count Heuristic is Inadmissible

Example
Consider STRIPS planning task N = ({a, b}, 1, {0}, {a, b}) with
I =0,0=(0,{a, b},0,1). Let L= {a, b} and O = 0.

Landmark state (0}, £) for the initial state is valid and the estimate
is htM-count(J (() {a, b})) = 2
while h*(I) = 1.

s pLM-count iq inadmissible.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023 29 / 32

G3. Landmarks: Orderings & LM-Count Heuristic

Landmark-count Heuristic

LM-count Heuristic: Comments

» LM-Count alone is not a particularily informative heuristic.

v

On the positive side, it complements KFF very well.

» For example, the LAMA planning system alternates between
expanding a state with minimal hFF and minimal ptM-count

estimate.

» There is an admissible variant of the heuristic based on
operator cost partitioning.

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization December 4, 2023

30 /

32

G3. Landmarks: Orderings & LM-Count Heuristic Summary

G3.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023 31 /32

G3. Landmarks: Orderings & LM-Count Heuristic

Summary

» We can propagate landmark sets over action applications.

» Landmark orderings can be useful for detecting when a
landmark that has already been achieved should be further

considered.

» We can combine the landmark information from several paths

to the same state.

Summary

» The LM-count heuristic counts how many landmarks still need

to be satisfied.

» The LM-count heuristic is inadmissible (but there is an

admissible variant).

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization December 4, 2023

32/

32

	Landmark Orderings
	

	Landmark Propagation
	

	Landmark-count Heuristic
	

	Summary
	

