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Why Landmark Orderings?

Landmark Orderings

» To compute a landmark heuristic estimate for state s
we need landmarks for s.

» We could invest the time to compute them
for every state from scratch.

> Alternatively, we can compute landmarks once and
propagate them over operator applications.

» Landmark orderings are used to detect landmarks that should
be further considered because they (again) need to be
satisfied later.

P (We will later see yet another approach, where heuristic
computation and landmark computation are integrated ~ LM-Cut.)
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Example

Consider task ({a, b,c,d},l,{01,02,...,0n},d) with
» [(v) =1 forve{ab,cd}
» o1 =(T,aAb), and
» 0y = (a,c A—a A —b) (plus some more operators).

You know that a, b, ¢ and d are all fact landmarks for /.

» What landmarks are still required to be made true in state
/[[<01, 02>]]?

» You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
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Terminology

Let 7 = (01,...,0pn) be a sequence of operators applicable in
state / and let ¢ be a formula over the state variables.

> o is true at time i if I[(o1,...,0)] F ¢.
Also special case i = 0: ¢ is true at time 0 if / |= .

>

» No formula is true at time i < 0.

P> ¢ is added at time i if it is true at time / but not at time / — 1.
>

@ is first added at time / if it is true at time /
but not at any time j < /.
We denote this i by first(p, 7).

v

last(, 7) denotes the last time in which ¢ is added in 7.
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Landmark Orderings

Definition (Landmark Orderings)
Let ¢ and % be formula landmarks. There is

> a natural ordering between ¢ and 1) (written p — 1))
if in each plan 7 it holds that first(p, 7) < first(¢), 7).
"o must be true some time strictly before 1 is first added.”

> a greedy-necessary ordering between ¢ and v (written
© —rgn 1) if for every plan m = (01, ..., 0,) it holds that
S[[<Olv ) Oﬁrst(l/),ﬂ)—l)]] ): P-
"o must be true immediately before ¢ is first added.”

> a weak ordering between ¢ and v (written ¢ —, 1))
if in each plan 7 it holds that first(p, ) < last(, ).
"o must be true some time before v is last added.”

Not covered: reasonable orderings, which generalize weak orderings
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Natural Orderings

Definition
There is a natural ordering between ¢ and ¢ (written ¢ — ) if in
each plan 7 it holds that first(yp, m) < first(v, 7).

» We can directly determine natural orderings from the LM sets
computed from the simplified relaxed task graph.

» For fact landmarks v, v/ with v # v/,
if n,, € LM(n,) then v/ — v.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 4, 2023

Landmark Orderings

/ 32

G3. Landmarks: Orderings & LM-Count Heuristic

Greedy-necessary Orderings

Definition

There is a greedy-necessary ordering between ¢ and 1

(written ¢ —4, ¢0) if in each plan where v is first added at time i,
@ is true at time / — 1.

» We can again determine such orderings from the sRTG.

» For an OR node n,, we define the set of first achievers as
FA(ny,) = {no | no € succ(n,) and n, & LM(n,)}.

> Then v/ —gn v if ny € succ(n,) for all n, € FA(ny).
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G3.2 Landmark Propagation
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Example Revisited

Consider task ({a, b,c,d},l,{o1,02,...,0n},d) with
» I(v) =1 forve{ab,c,d}
» o =(T,aAb)and 0 = (a,c A —a A —b) (plus some more).

You know that a, b, ¢ and d are all fact landmarks for /.

» What landmarks are still required to be made true in state
IT{o1, 02)]? All not achieved yet on the state path

» You get the additional information that variable a must be
true immediately before d is first made true. Any changes?
Exploit orderings to determine landmarks that are still
required.

P There is another path to the same state where b was never
true. What now?
Exploit information from multiple paths.
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Past and Future Landmarks

» In the following, £, is always a set of formula landmarks for
the initial state with set of orderings O;.

> The set L;,(s) of past landmarks of a state s
contains all landmarks from £; that are
at some point true in every path from the initial state to s.

» The set L; . (s) of future landmarks of a state s
contains all landmarks from £; that are also
landmarks of s but not true in s.

> Past landmarks are important for inferring which orderings are
still relevant, future landmarks are relevant for the heuristic
estimates.

> Since the exact sets are defined over all paths
between certain states, we use approximations.
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Landmark State

Definition
Let £, be a set of formula landmarks for the initial state.

A landmark state L is L or a pair (Lpast, Lsut) such that
['fut U 'Cpast = El-

L is valid in state s if
» I = 1 and I has no s-plan, or
> L= <£pasta£fut> with ﬁpast ) ‘C;ast and Lg € EFut'
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Context in Search: LM-BFS Algorithm

L(init), £/, O; := compute_landmark_info(init())
if h(init(), L(init)) < co then
open.insert((init(), 0, h(init(), L(init))))
while open # () do
(s,g,v) = open.pop()
if v < h(s,L(s)) then
open.insert((s, g, h(s,1L(s))))
else if g < distances(s) then
distances(s) := g
if is_goal(s) then return extract_plan(s);
foreach (a,s’) € succ(s) do
I’ := progress_landmark_state(IL(s), (s, a, s))
L(s") :=merge_landmark_states(L(s"), L")
if L(s") # L and h(s',L(s")) < oo then
open.insert((s’, g + cost(a), h(s',L(s")))

L(s) := (L;,0) and distances(s) := o if read before set.
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Context: Exploit Information from Multiple Paths

L(init), £/, O; := compute_landmark_info(init())
if h(init(), L(init)) < co then
open.insert((init(), 0, h(init(), L(init))))
while open # () do
<57 & V> = Open'pOP()
if v < h(s,LL(s)) then
open.insert((s, g, h(s,1L(s))))
else if g < distances(s) then
distances(s) := g
if is_goal(s) then return extract_plan(s);
foreach (a,s’) € succ(s) do
I’ := progress_landmark_state(IL(s), (s, a, s'))
IL(s’) :=merge_landmark_states(LL(s’), L")
if L(s") # L and h(s',L(s")) < oo then
open.insert((s’, g + cost(a), h(s’,L(s")))

L(s) := (£;,0) and distances(s) := oo if read before set.
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Merging Landmark States Context: Progression for a Transition

L(init), £/, O; := compute_landmark_info(init())
. . . . if h(init(),L(init)) < co then
Merging combines the information from two landmark states. open.insert((init(), 0, h(init(), L(init))))

merge_landmark_states(IL, L") while open # () do

if L=_1 or' = 1 then return L; .<S,g, v) = open.pop()
(Lpast, Lsut) =1L if v < h(_S,]L(s)) then
( A )= L open.insert((s, g, h(s,1L(s))))

past’ ~fut else if distances(s) then
return (Lpast N Liase, Lur U L) distfn:es(s) = g( )
if is_goal(s) then return extract_plan(s);
Theorem foreach (a.s’) € succ(s) do
If L and 1" are valid in a state s then also L’ := progress_landmark_state(L(s), (s, a, s"))
merge_landmark_states(IL, L") is valid in s. LL(s") :=merge_landmark_states(L(s’), L")

if L(s’) # L and h(s’,L(s")) < oo then
open.insert((s’, g + cost(a), h(s’,1L(s")))

L(s) := (L, 0) and distances(s) := oo if read before set.
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Progressing Landmark States Basic Progression
1 1+1 / . .. . -
> If we expand a §tate s with transmon (s,0,5), Definition (Basic Progression)
we use progression to determine a landmark state for s’ Basi . landmark r I d o
; the one we know for s asic progression maps landmark state (Lpast, Lsut) and transition
rom .
_ _ _ (s,0,s") to landmark state (Lpast U Ladd, Lsut \ Ladd), Where
> We will only introduce progression methods that preserve the Logd ={p€L)]|sEpands = o}

validity of landmark states.

> Since every progression state gives a valid landmark state,
we can merge results from different methods into a valid
landmark state.

“Extend the past with all landmarks added in s’ and
remove them from the future.”
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Goal Progression

Definition (Goal Progression)

Let v be the goal of the task.

Goal progression maps landmark state (Lpast, Lsut) and transition
(s,0,s") to landmark state (L, Lgoa1), Where

Looal = {0 €Ly |7 @and s [~}

“All landmarks that must be true in the goal but are false in s’
must be achieved in the future.”
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Weak Ordering Progression

© —w ¥ “@ must be true some time before 1 is last added.”

Definition (Weak Ordering Progression)

The weak ordering progression maps landmark state (Lpast, Lut)
and transition (s, 0,s’) to landmark state

(L1AY | 3 —w ¥ 1 @ & Lpast})-

“Landmark 1 must be added in the future because we haven't
done something that must be done before 1 is last added.”
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Greedy-necessary Ordering Progression

© —rgn ¥: “p must be true immediately before 1) is first added.”

Definition (Greedy-necessary Ordering Progression)
The greedy necessary ordering progression maps landmark state
(Lpast, Leyt) and transition (s, 0,s’) to landmark state
> L if thereis a ¢ —gn ¥ € O) with ¢ & Lpast, s = ¢ and
s' =1, and

> (L1, {p|s' FEpand 3p =gt € O 1) € Lpast, s’ = P})
otherwise.

“Landmark 1) has not been true, yet, and ¢ must be true
immediately before it becomes true. Since ¢ is currently false,
we must make it true in the future (before making v true).”
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Natural Ordering Progression

@ — :  must be true some time strictly before v is first added.

Definition (Natural Ordering Progression)
The natural ordering progression maps landmark state (Lpast, Lsut)
and transition (s, 0,s’) to landmark state
> | if thereisa p — ¢ € Oy with ¢ & Lpast and s” = 4, and
> (L;,0) otherwise.

Not (yet) useful: All known methods only find natural orderings
that are true for every applicable operator sequence, so the
interesting first case never happens in LM-BFS.
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LM-count Heuristic is Path-dependent

G3. Landmarks: Orderings & LM-Count Heuristic Landmark-count Heuristic

Landmark-count Heuristic

The landmark-count heuristic counts the landmarks that still have
to be achieved.

Definition (LM-count Heuristic)

Let I be a planning task, s be a state and L = (Lpast, Lut) be a
valid landmark state for s.

» LM-count heuristic gives estimates for landmark states,
which depend on the considered paths.

» Search algorithms need estimates for states.

The LM-count heuristic for s and L is > ~> we use estimate from the current landmark state.

50 L= 1, » ~~ heuristic estimate for a state is not well-defined.

hLM—count s L) =
(s, L) |Leut| otherwise

In the original work, L, was determined without considering
information from multiple paths and could not detect dead-ends.
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LM-count Heuristic is Inadmissible

Example
Consider STRIPS planning task N = ({a, b}, 1, {0}, {a, b}) with
I =0,0=(0,{a, b},0,1). Let L= {a, b} and O = 0.

Landmark state (0}, £) for the initial state is valid and the estimate
is htM-count(J (() {a, b})) = 2
while h*(I) = 1.

s pLM-count iq inadmissible.
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Landmark-count Heuristic

LM-count Heuristic: Comments

» LM-Count alone is not a particularily informative heuristic.

v

On the positive side, it complements KFF very well.

» For example, the LAMA planning system alternates between
expanding a state with minimal hFF and minimal ptM-count

estimate.

» There is an admissible variant of the heuristic based on
operator cost partitioning.
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G3.4 Summary
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Summary

» We can propagate landmark sets over action applications.

» Landmark orderings can be useful for detecting when a
landmark that has already been achieved should be further

considered.

» We can combine the landmark information from several paths

to the same state.

Summary

» The LM-count heuristic counts how many landmarks still need

to be satisfied.

» The LM-count heuristic is inadmissible (but there is an

admissible variant).
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