Planning and Optimization F2. Critical Path Heuristics: Properties and Π^m Compilation

Malte Helmert and Gabriele Röger

Universität Basel

November 27, 2023

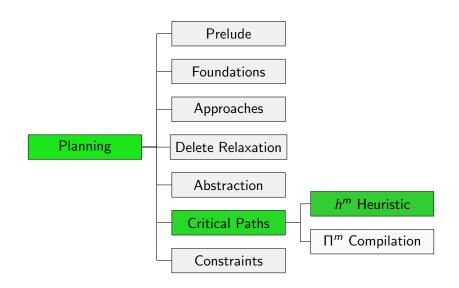
Π^m Compilation

1^C Compilatio

Summa

Literature 000

Content of this Course



Heuristic Properties

Π^m Compilation

^C Compilatior 0 Summary

Literature 000

Heuristic Properties

Heuristic for Forward or Backward Search? (1)

Any heuristic can be used for both, forward and backward search:

Let h_f be a forward search heuristic (as in earlier chapters).
 We can use it to get estimate for state S in backward search on task (V, I, O, G), computing h_f(I) on task (V, I, O, S).

Heuristic for Forward or Backward Search? (1)

Any heuristic can be used for both, forward and backward search:

- Let h_f be a forward search heuristic (as in earlier chapters).
 We can use it to get estimate for state S in backward search on task (V, I, O, G), computing h_f(I) on task (V, I, O, S).
- We also can use a backward search heuristic h_b in forward search on task (V, I, O, G), determining estimate for state s as h_b(G) on task (V, s, O, G).

Heuristic for Forward or Backward Search? (2)

We defined h^m so that it can directly be used for both directions on task (V, I, O, G) as

- $h_f^m(s) := h^m(s, G)$ for forward search, or
- $h_b^m(S) := h^m(I, S)$ for backward search.

Precomputation determines $h^m(s, B)$ for all $B \subseteq V$ with $|B| \leq m$.

- For *h*^{*m*}_{*f*}, we can only use these values for a single heuristic evaluation, because the state *s* changes.
- For h^m_b, we can re-use these values and all subsequent heuristic evaluations are quite cheap.
- $\rightarrow h^m$ better suited for backward search
- \rightarrow We examine it in the following in this context.

. . .

Heuristic Properties (1)

Theorem

Let $\Pi = \langle V, I, O, G \rangle$ be a STRIPS planning tasks and $S \subseteq V$ be a backward search state. Then $h_b^m(S) := h^m(I, S)$ is a safe, goal-aware, consistent, and admissible heuristic for Π .

Proof.

We prove goal-awareness and consistency, the other properties follow from these two.

Goal-awareness: S is a goal state iff $S \subseteq I$. Then $h_b^m(S) = h^m(I, S) = 0$.

Heuristic Properties (2)

Proof (continued).

Consistency: Assume h_b^m is not consistent, i.e., there is a state S and an operator o, where $R := sregr(S, o) \neq \bot$ such that $h_b^m(S) > cost(o) + h_b^m(R)$.

Then $h_b^m(S) = h^m(I, S)$ and there is $S' \subseteq S$ with $|S'| \leq m$ and $h^m(I, S') = h^m(I, S)$: if $|S| \leq m$, choose S' = S, otherwise choose any maximizing subset from the last h^m equation.

As $S' \subseteq S$ and $sregr(S, o) \neq \bot$, also $R' := sregr(S', o) \neq \bot$ and $(R', o) \in R(S', O)$. This gives $h^m(I, S') \leq cost(o) + h^m(I, R')$. As $S' \subseteq S$, it holds that $R' \subseteq R$ and $h^m(I, R') \leq h^m(I, R)$. Overall, we get $h_b^m(S) = h^m(I, S) = h^m(I, S') \leq cost(o) + h^m(I, R') \leq cost(o) + h^m(I, R) = cost(o) + h_b^m(R)$. $4 \square$ Π^m Compilation

1^C Compila ວດ Summar

Literature 000

Heuristic Properties (3)

Theorem

For $m, m' \in \mathbb{N}_1$ with m < m' it holds that $h^m \le h^{m'}$.

(Proof omitted.)

Heuristic Properties (4)

Theorem

Let $\Pi = \langle V, I, O, G \rangle$ be a STRIPS planning task. For a sufficiently large *m*, it holds that $h^m = r^*$ on Π .

Proof Sketch.

It is easy to check that for m = |V| the heuristic definition of h^m can be simplified so that it becomes the definition of r^* .

Heuristic Properties

 Π^m Compilation

I^C Compilatio

Summary 00 Literature 000

Π^m Compilation

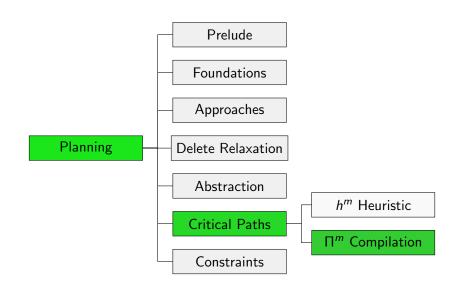
 Π^m Compilation

1^C Compilatio

Sum

Literature 000

Content of this Course



Π^m Compilation: Motivation

- We have seen that h¹ = h^{max} and that h^{max} corresponds to the cost of a critical path in the relaxed task graph.
- What about *m* > 1?
- Π^m compilation derives for a given m a task Π^m from the original task Π.
- h^m corresponds to cost of critical path in the relaxed task graph of Π^m.
- \rightarrow Better understanding of h^m
- \rightarrow Also interesting in the context of landmark heuristics

Idea of Π^m Compilation

- h^{max} only considers variables individually.
- For example, it cannot detect that a goal {a, b} is unreachable from the empty set if every action that adds a deletes b and vice versa.
- Idea: Use meta-variable $v_{\{a,b\}}$ to capture such interactions.
- Intuitively v_{a,b} is reachable in Π^m if a state where a and b are both true would be reachable in Π when only capturing interactions of at most m variables.

Heuristic Properties	∏ ^{<i>m</i>} Compilation	П ^С Compilation	Summary	Literature
0000000	000000000	00	00	000
Sama Notati	on			

Some Notation

- For a set X of variables and $m \in \mathbb{N}_1$ we define $X^m := \{v_Y \mid Y \subseteq X, |Y| \le m\}.$
- Example: $\{a, b, c\}^2 = \{v_{\emptyset}, v_{\{a\}}, v_{\{b\}}, v_{\{c\}}, v_{\{a,b\}}, v_{\{a,c\}}, v_{\{b,c\}}\}$

Π^m Compilation

Definition (Π^m)

Let $\Pi = \langle V, I, O, G \rangle$ be a STRIPS planning task. For $m \in \mathbb{N}_1$, the task Π^m is the STRIPS planning task $\langle V^m, I^m, O^m, G^m \rangle$, where $O^m = \{a_{o,S} \mid o \in O, S \subseteq V, |S| < m, S \cap (add(o) \cup del(o)) = \emptyset\}$ with

•
$$pre(a_{o,S}) = (pre(o) \cup S)^m$$

- $add(a_{o,S}) = \{v_Y \mid Y \subseteq add(o) \cup S, |Y| \le m, Y \cap add(o) \ne \emptyset\}$
- $del(a_{o,S}) = \emptyset$
- $cost(a_{o,S}) = cost(o)$

$$V' = \{v_{\emptyset}, v_{\{a\}}, v_{\{b\}}, v_{\{c\}}, v_{\{a,b\}}, v_{\{a,c\}}, v_{\{b,c\}}\}$$

$$V = \{a, b, c\}$$

$$V' = V^2 = \{v_Y \mid Y \subseteq V, |Y| \le 2\}$$

$$V' = \{v_{\emptyset}, v_{\{a\}}, v_{\{b\}}, v_{\{c\}}, v_{\{a,b\}}, v_{\{a,c\}}, v_{\{b,c\}}\}$$
$$I' = \{v_{\emptyset}, v_{\{a\}}\}$$

$$I = \{a\} \\ I' = I^2 = \{v_Y \mid Y \subseteq I, |Y| \le 2\}$$

$$V' = \{v_{\emptyset}, v_{\{a\}}, v_{\{b\}}, v_{\{c\}}, v_{\{a,b\}}, v_{\{a,c\}}, v_{\{b,c\}}\}$$
$$I' = \{v_{\emptyset}, v_{\{a\}}\}$$
$$G' = \{v_{\emptyset}, v_{\{a\}}, v_{\{b\}}, v_{\{c\}}, v_{\{a,b\}}, v_{\{a,c\}}, v_{\{b,c\}}\}$$

$$G = \{a, b, c\}$$

$$G' = G^2 = \{v_Y \mid Y \subseteq G, |Y| \le 2\}$$

$$V' = \{v_{\emptyset}, v_{\{a\}}, v_{\{b\}}, v_{\{c\}}, v_{\{a,b\}}, v_{\{a,c\}}, v_{\{b,c\}}\}$$
$$I' = \{v_{\emptyset}, v_{\{a\}}\}$$
$$G' = \{v_{\emptyset}, v_{\{a\}}, v_{\{b\}}, v_{\{c\}}, v_{\{a,b\}}, v_{\{a,c\}}, v_{\{b,c\}}\}$$
$$O' = \{a_{o_1,\emptyset}, a_{o_1,\{a\}}, a_{o_2,\emptyset}, a_{o_2,\{c\}}, a_{o_3,\emptyset}, a_{o_3,\{b\}}, a_{o_3,\{c\}}\}$$

$$\begin{split} o_{1} &= \langle \{a, b\}, \{c\}, \{b\}, 1 \rangle \\ o_{2} &= \langle \{a\}, \{b\}, \{a\}, 2 \rangle \\ o_{3} &= \langle \{b\}, \{a\}, \emptyset, 2 \rangle \\ O' &= \{a_{o,S} \mid o \in O, S \subseteq V, |S| < m, S \cap (add(o) \cup del(o)) = \emptyset \} \end{split}$$

For running example Π we get $\Pi^2 = \langle V', I', O', G' \rangle$, where

$$V' = \{v_{\emptyset}, v_{\{a\}}, v_{\{b\}}, v_{\{c\}}, v_{\{a,b\}}, v_{\{a,c\}}, v_{\{b,c\}}\}$$
$$I' = \{v_{\emptyset}, v_{\{a\}}\}$$
$$G' = \{v_{\emptyset}, v_{\{a\}}, v_{\{b\}}, v_{\{c\}}, v_{\{a,b\}}, v_{\{a,c\}}, v_{\{b,c\}}\}$$
$$O' = \{a_{o_1,\emptyset}, a_{o_1,\{a\}}, a_{o_2,\emptyset}, a_{o_2,\{c\}}, a_{o_3,\emptyset}, a_{o_3,\{b\}}, a_{o_3,\{c\}}\}$$

with (for example)

 $a_{o_3,\{c\}} = \langle \{v_\emptyset, v_{\{b\}}, v_{\{c\}}, v_{\{b,c\}}\}, \ldots, \ldots, \rangle$

 $o_3 = \langle \{b\}, \{a\}, \emptyset, 2 \rangle$ $pre(a_{o,S}) = (pre(o) \cup S)^2$

For running example Π we get $\Pi^2 = \langle V', I', O', G' \rangle$, where

$$V' = \{v_{\emptyset}, v_{\{a\}}, v_{\{b\}}, v_{\{c\}}, v_{\{a,b\}}, v_{\{a,c\}}, v_{\{b,c\}}\}$$
$$I' = \{v_{\emptyset}, v_{\{a\}}\}$$
$$G' = \{v_{\emptyset}, v_{\{a\}}, v_{\{b\}}, v_{\{c\}}, v_{\{a,b\}}, v_{\{a,c\}}, v_{\{b,c\}}\}$$
$$O' = \{a_{o_1,\emptyset}, a_{o_1,\{a\}}, a_{o_2,\emptyset}, a_{o_2,\{c\}}, a_{o_3,\emptyset}, a_{o_3,\{b\}}, a_{o_3,\{c\}}\}$$

with (for example) $a_{o_3, \{c\}} = \langle \{v_\emptyset, v_{\{b\}}, v_{\{c\}}, v_{\{b,c\}}\}, \{v_{\{a\}}, v_{\{a,c\}}\}, \dots, \rangle$

 $\begin{array}{l} o_3 = \langle \{b\}, \{a\}, \emptyset, 2 \rangle \\ add(a_{o,S}) = \{v_Y \mid Y \subseteq add(o) \cup S, |Y| \leq m, Y \cap add(o) \neq \emptyset \} \end{array}$

For running example Π we get $\Pi^2 = \langle V', I', O', G' \rangle$, where

$$V' = \{v_{\emptyset}, v_{\{a\}}, v_{\{b\}}, v_{\{c\}}, v_{\{a,b\}}, v_{\{a,c\}}, v_{\{b,c\}}\}$$
$$I' = \{v_{\emptyset}, v_{\{a\}}\}$$
$$G' = \{v_{\emptyset}, v_{\{a\}}, v_{\{b\}}, v_{\{c\}}, v_{\{a,b\}}, v_{\{a,c\}}, v_{\{b,c\}}\}$$
$$O' = \{a_{o_1,\emptyset}, a_{o_1,\{a\}}, a_{o_2,\emptyset}, a_{o_2,\{c\}}, a_{o_3,\emptyset}, a_{o_3,\{b\}}, a_{o_3,\{c\}}\}$$

with (for example)

 $a_{o_{3},\{c\}} = \langle \{v_{\emptyset}, v_{\{b\}}, v_{\{c\}}, v_{\{b,c\}}\}, \{v_{\{a\}}, v_{\{a,c\}}\}, \emptyset, \dots \rangle$

 $o_3 = \langle \{b\}, \{a\}, \emptyset, 2 \rangle$ $del(a_{o,S}) = \emptyset$

For running example Π we get $\Pi^2 = \langle V', I', O', G' \rangle$, where

$$V' = \{v_{\emptyset}, v_{\{a\}}, v_{\{b\}}, v_{\{c\}}, v_{\{a,b\}}, v_{\{a,c\}}, v_{\{b,c\}}\}$$
$$I' = \{v_{\emptyset}, v_{\{a\}}\}$$
$$G' = \{v_{\emptyset}, v_{\{a\}}, v_{\{b\}}, v_{\{c\}}, v_{\{a,b\}}, v_{\{a,c\}}, v_{\{b,c\}}\}$$
$$O' = \{a_{o_1,\emptyset}, a_{o_1,\{a\}}, a_{o_2,\emptyset}, a_{o_2,\{c\}}, a_{o_3,\emptyset}, a_{o_3,\{b\}}, a_{o_3,\{c\}}\}$$

with (for example)

 $a_{o_{3},\{c\}} = \langle \{v_{\emptyset}, v_{\{b\}}, v_{\{c\}}, v_{\{b,c\}}\}, \{v_{\{a\}}, v_{\{a,c\}}\}, \emptyset, 2 \rangle$

 $o_3 = \langle \{b\}, \{a\}, \emptyset, 2 \rangle$ $cost(a_{o,S}) = cost(o)$

Π^m : Properties

Theorem $(h_{\Pi}^m = h_{\Pi^m}^{\max})$

Let Π be a STRIPS planning task and $m \in \mathbb{N}_1$.

Then for each state s of Π it holds that $h_{\Pi}^{m}(s) = h_{\Pi^{m}}^{max}(s^{m})$, where the subscript denotes on which task the heuristic is computed.

(Proof omitted.)

Heuristic Properties 0000000	Π^m Compilation	Π ^C Compilation 00	Summary 00	Literature 000

Can we in general compute an admissible heuristic on Π^m and get admissible estimates for Π ? \sim No!

Theorem

There are STRIPS planning tasks Π , $m \in \mathbb{N}_1$ and admissible heuristics h such that $h^*_{\Pi}(s) < h^*_{\Pi^m}(s^m)$ for some state s of Π .

(Proof omitted.)

Intuition: we may need separate copies of the same action to achieve different meta-fluents

Heuristic Properties

Π^m Compilation

 Π^C Compilation

Summary

Literature 000

Π^{C} Compilation

Outlook: Π^{C} and Π^{C}_{ce} Compilation

- Π^m (and h^m) must consider all subsets up to size m.
- $h_{\Pi^m}^*$ is in general not admissible for Π .

Outlook: Π^{C} and Π^{C}_{ce} Compilation

- Π^m (and h^m) must consider all subsets up to size m.
- $h_{\Pi^m}^*$ is in general not admissible for Π .
- The compilation Π^C is defined for a set C of atom sets.
 - C can contain arbitrary subsets of arbitrary size.
 - Task Π^C is again delete-free.
 - $h_{\Pi^{c}}^{+} = h_{\Pi^{c}}^{*}$ is admissible for Π .
 - The task representation is exponential in |C| (one action copy for every set of meta-variables the action can make true).

Outlook: Π^{C} and Π^{C}_{ce} Compilation

- Π^m (and h^m) must consider all subsets up to size m.
- $h_{\Pi^m}^*$ is in general not admissible for Π .
- The compilation Π^C is defined for a set C of atom sets.
 - C can contain arbitrary subsets of arbitrary size.
 - Task Π^C is again delete-free.
 - $h_{\Pi^{c}}^{+} = h_{\Pi^{c}}^{*}$ is admissible for Π .
 - The task representation is exponential in |C| (one action copy for every set of meta-variables the action can make true).
- Π_{ce}^{C} is an alternative to Π^{C} using conditional effects
 - Π_{ce}^{C} can be exponentially smaller (in |C|) than Π^{C} .
 - $h_{\Pi^{C}}^{+}$ dominates $h_{\Pi^{C}}^{+}$ for set C of non-unit sets.

Heuristic Properties

Π^{'''} Compilation

C Compilation

Summary ●○ Literature 000

Summary

Summary

- h^m heuristics are best suited for backward search.
- h^m heuristics are safe, goal aware, consistent and admissible.
- The Π^m compilation explicitly represents sets
 (² conjunctions) of variables as meta-variables.
- $\bullet \ h_{\Pi}^{m}(s) = h_{\Pi^{m}}^{\max}(s^{m})$
- The ideas underlying the Π^m compilation have been generalized to the Π^C and Π^C_{ce} compilation.

Heuristic Properties

Π^m Compilation

^C Compilation O Summary

Literature ●00

Literature

Literature (1)

References on critical path heuristics:

Patrik Haslum and Hector Geffner. Admissible Heuristics for Optimal Planning. *Proc. AIPS 2000*, pp. 140–149, 2000. Introduces h^m heuristics.

Patrik Haslum.

 $h^m(P) = h^1(P^m)$: Alternative Characterisations of the Generalisation From h^{\max} to h^m .

Proc. ICAPS 2009, pp. 354–357, 2009. Introduces Π^m compilation.

Literature (2)

Patrik Haslum.

Incremental Lower Bounds for Additive Cost Planning Problems. *Proc. ICAPS 2012*, pp. 74–82, 2012.

Introduces Π^C compilation.

 Emil Keyder, Jörg Hoffmann and Patrik Haslum.
 Improving Delete Relaxation Heuristics Through Explicitly Represented Conjunctions.
 JAIR 50, pp. 487–533, 2014.
 Introduces Π^C_{ce} compilation.