Planning and Optimization F1. Critical Path Heuristics: h^{m}

Malte Helmert and Gabriele Röger

Universität Basel

November 27, 2023

Content of this Course

Set Representation

In This (and the Next) Chapter...

■ . . . we consider only STRIPS, and
■ ... we focus on backward search and regression.

Set Representation of STRIPS Planning Tasks

For a more convenient notation, we will use a set representation of STRIPS planning task...

Three differences:
■ Represent conjunctions of variables as sets of variables.

- Use two sets to represent add and delete effects of operators separately.
- Represent states as sets of the true variables.

Reminder: STRIPS Operators in Set Representation

- Every STRIPS operator is of the form

$$
\left\langle v_{1} \wedge \cdots \wedge v_{p}, \quad a_{1} \wedge \cdots \wedge a_{q} \wedge \neg d_{1} \wedge \cdots \wedge \neg d_{r}, c\right\rangle
$$

where v_{i}, a_{j}, d_{k} are state variables and c is the cost.

- The same operator o in set representation is $\langle\operatorname{pre}(o), \operatorname{add}(o), \operatorname{del}(o), \operatorname{cost}(o)\rangle$, where
- pre(o) $=\left\{v_{1}, \ldots, v_{p}\right\}$ are the preconditions,
- $\operatorname{add}(o)=\left\{a_{1}, \ldots, a_{q}\right\}$ are the add effects,

■ $\operatorname{del}(o)=\left\{d_{1}, \ldots, d_{r}\right\}$ are the delete effects, and

- $\operatorname{cost}(o)=c$ is the operator cost.
- Since STRIPS operators must be conflict-free, $\operatorname{add}(o) \cap \operatorname{del}(o)=\emptyset$

STRIPS Planning Tasks in Set Representation

A STRIPS planning task in set representation is given as a tuple $\langle V, I, O, G\rangle$, where

- V is a finite set of state variables,
$\square I \subseteq V$ is the initial state,
■ O is a finite set of STRIPS operators in set representation,
■ $G \subseteq V$ is the goal.

STRIPS Planning Tasks in Set Representation

A STRIPS planning task in set representation is given as a tuple $\langle V, I, O, G\rangle$, where

- V is a finite set of state variables,
$■ I \subseteq V$ is the initial state,
- O is a finite set of STRIPS operators in set representation,
- $G \subseteq V$ is the goal.

The corresponding planning task in the previous notation is $\left\langle V, I^{\prime}, O^{\prime}, \gamma\right\rangle$, where

- $I^{\prime}(v)=\mathbf{T}$ iff $v \in I$,
$\square O^{\prime}=\left\{\left\langle\bigwedge_{v \in \operatorname{pre}(o)} v, \bigwedge_{v \in \operatorname{add}(o)} v \wedge \bigwedge_{v \in \operatorname{del}(o)} \neg v, \operatorname{cost}(o)\right\rangle \mid o \in O\right\}$,
- $\gamma=\bigwedge_{v \in G} v$.

Reminder: STRIPS Regression

Definition (STRIPS Regression)

Let $\varphi=\varphi_{1} \wedge \cdots \wedge \varphi_{n}$ be a conjunction of atoms, and let \circ be a STRIPS operator which adds the atoms a_{1}, \ldots, a_{k} and deletes the atoms d_{1}, \ldots, d_{l}.

The STRIPS regression of φ with respect to o is

$$
\operatorname{sregr}(\varphi, o):= \begin{cases}\perp & \text { if } \varphi_{i}=d_{j} \text { for some } i, j \\ \operatorname{pre}(o) \wedge \bigwedge\left(\left\{\varphi_{1}, \ldots, \varphi_{n}\right\} \backslash\left\{a_{1}, \ldots, a_{k}\right\}\right) \quad \text { else }\end{cases}
$$

Note: $\operatorname{sregr}(\varphi, o)$ is again a conjunction of atoms, or \perp.

STRIPS Regression in Set Representation

Definition (STRIPS Regression)

Let A be a set of atoms, and let o be a STRIPS operator $o=\langle\operatorname{pre}(o), \operatorname{add}(o), \operatorname{del}(o), \operatorname{cost}(o)\rangle$.

The STRIPS regression of A with respect to o is

$$
\operatorname{sregr}(A, o):= \begin{cases}\perp & \text { if } A \cap \operatorname{del}(o) \neq \emptyset \\ \operatorname{pre}(o) \cup(A \backslash \operatorname{add}(o)) & \text { otherwise }\end{cases}
$$

Note: $\operatorname{sregr}(A, o)$ is again a set of atoms, or \perp.

Perfect Regression Heuristic

Perfect Regression Heuristic

Definition (Perfect Regression Heuristic)

For a STRIPS planning task $\langle V, I, O, G\rangle$ the perfect regression heuristic r^{*} for state s and variable set $A \subseteq V$ is defined as the (point-wise) greatest fixed-point solution of the equations:

$$
\begin{aligned}
& r^{*}(s, A)=0 \\
& r^{*}(s, A)=\min _{(B, o) \in R(A, O)}\left[\operatorname{cost}(o)+r^{*}(s, B)\right] \\
& \text { otherwise } \\
& R(A, O)=\{(B, o) \mid o \in O, B=\operatorname{sregr}(A, o) \neq \perp\}
\end{aligned}
$$

Perfect Regression Heuristic r* vs. Perfect Heuristic h^{*}

Theorem

For a STRIPS planning task $\langle V, I, O, G\rangle$ it holds for each state s that $h^{*}(s)=r^{*}(s, G)$.

Intuition: We can extract a path from the operators in the minimizing pairs (B, o), starting from the goal.
$\rightsquigarrow r^{*}$ cannot be computed efficiently.

Critical Path Heuristics

Content of this Course

Running Example

We will use the following running example throughout this chapter:
$\Pi=\left\langle V, I,\left\{o_{1}, o_{2}, o_{3}\right\}, G\right\rangle$ with

$$
\begin{aligned}
V & =\{a, b, c\} \\
I & =\{a\} \\
o_{1} & =\langle\{a, b\},\{c\},\{b\}, 1\rangle \\
o_{2} & =\langle\{a\},\{b\},\{a\}, 2\rangle \\
o_{3} & =\langle\{b\},\{a\}, \emptyset, 2\rangle \\
G & =\{a, b, c\}
\end{aligned}
$$

Optimal plan $o_{2}, o_{3}, o_{1}, o_{2}, o_{3}$ has cost 9 .

Simplified Relaxed Task Graph

Definition

For a STRIPS planning task $\Pi=\langle V, I, O, \gamma\rangle$, the simplified relaxed task graph $s R T G\left(\Pi^{+}\right)$is the AND/OR graph
$\left\langle N_{\text {and }} \cup N_{\text {or }}, A\right.$, type \rangle with

- $N_{\text {and }}=\left\{n_{o} \mid o \in O\right\} \cup\left\{v_{l}, v_{G}\right\}$ with type $(n)=\wedge$ for all $n \in N_{\text {and }}$,
$■ N_{\text {or }}=\left\{n_{v} \mid v \in V\right\}$ with $\operatorname{type}(n)=\vee$ for all $n \in N_{\text {or }}$, and
■ $A=\left\{\left\langle n_{a}, n_{o}\right\rangle \mid o \in O, a \in \operatorname{add}(o)\right\} \cup$ $\left\{\left\langle n_{o}, n_{p}\right\rangle \mid o \in O, p \in \operatorname{pre}(o)\right\} \cup$ $\left\{\left\langle n_{v}, n_{I}\right\rangle \mid v \in I\right\} \cup$ $\left\{\left\langle n_{G}, n_{v}\right\rangle \mid v \in \gamma\right\}$

Like RTG but without extra nodes to support arbitrary conditions.

$h^{\text {max }}$ in Simplified RTG

$h^{\max }$ in Simplified RTG

$h^{\text {max }}$ in Simplified RTG

The critical path justifies the heuristic estimate $h^{\max }(I)=3$

$h^{\text {max }}$ as Critical Path Heuristic

Definition ($h^{\text {max }}$ Heuristic)

For a STRIPS planning task $\langle V, I, O, G\rangle$ the heuristic $h^{\max }$ for state s and variable set $A \subseteq V$ is defined as the (point-wise) greatest fixed-point solution of $h^{\max }(s, A)=$

$$
\begin{cases}0 & \text { if } A \subseteq s \\ \min _{\langle B, o\rangle \in R(A, O)}\left[\operatorname{cost}(o)+h^{\max }(s, B)\right] & \text { if }|A| \leq 1 \text { and } A \nsubseteq s \\ \max _{v \in A} h^{\max (s,\{v\})} & \text { otherwise } \\ \quad R(A, O)=\{\langle B, o\rangle \mid o \in O, B=\operatorname{sregr}(A, o) \neq \perp\}\end{cases}
$$

Estimate $r^{*}(s, A)$ as cost of most expensive $v \in A$.
For STRIPS tasks, this definition specifies the same heuristic $h^{\max }$ as in the chapter on relaxation heuristics.

Critical Path Heuristics

Definition (h^{m} Heuristics)

For a STRIPS planning task $\langle V, I, O, G\rangle$ and $m \in \mathbb{N}_{1}$ the heuristic h^{m} for state s and variable set $A \subseteq V$ is defined as the (point-wise) greatest fixed-point solution of

$$
h^{m}(s, A)=
$$

$$
\begin{cases}0 & \text { if } A \subseteq s \\ \min _{\langle B, o\rangle \in R(A, O)}\left[\operatorname{cost}(o)+h^{m}(s, B)\right] & \text { if }|A| \leq m \text { and } A \nsubseteq \\ \max _{B \subseteq A, 1 \leq|B| \leq m} h^{m}(s, B) & \text { otherwise } \\ \quad R(A, O)=\{\langle B, o\rangle \mid o \in O, B=\operatorname{sregr}(A, o) \neq \perp\}\end{cases}
$$

Estimate $r^{*}(s, A)$ as cost of most expensive $B \subseteq A$ with $|B| \leq m$.

Computation

Critical Path Heuristics: Computation

Definition (h^{m} Heuristics)

For a STRIPS planning task $\langle V, I, O, G\rangle$ and $m \in \mathbb{N}_{1}$ the heuristic h^{m} for state s and variable set $A \subseteq V$ is defined as the (point-wise) greatest fixed-point solution of

$$
h^{m}(s, A)=
$$

$$
\begin{cases}0 & \text { if } A \subseteq s \\ \min _{\langle B, o\rangle \in R(A, O)}\left[\operatorname{cost}(o)+h^{m}(s, B)\right] & \text { if }|A| \leq m \text { and } A \nsubseteq s \\ \max _{B \subseteq A, 1 \leq|B| \leq m} h^{m}(s, B) & \text { otherwise }\end{cases}
$$

$$
R(A, O)=\{\langle B, o\rangle \mid o \in O, B=\operatorname{sregr}(A, o) \neq \perp\}
$$

Cheap to evaluate given $h^{m}(s, B)$ for all $B \subseteq V$ with $1 \leq|B| \leq m$. We precompute these values.

For value m and state s of task with variables V and operators O
Computing h^{m} Values for Variable Sets up to Size m
$S:=\{A \subseteq V| | A \mid \leq m\}$
Associate a cost attribute with each set $A \in S$.
for all sets $A \in S$:
if $A \subseteq s$ then A.cost $:=0$
else A.cost $:=\infty$
while no fixed point is reached:
Choose a variable set A from S. newcost $:=\min _{\langle B, o\rangle \in R(A, O)}[\operatorname{cost}(o)+\operatorname{currentcost}(B, S)]$ if newcost $<$ A.cost then A.cost $:=$ newcost

currentcost(B,S)

if $|B| \leq m$ then return B.cost else return $\max _{A \in S, A \subseteq B} A$.cost

h^{m} Precomputation (2)

■ Fixed point reached $\Rightarrow A$.cost $=h^{m}(s, A)$ for all $A \in S$.

- Intuition:

■ cost values satisfy h^{m} equations, and
■ no larger values can satisfy the equations: initialized to ∞ and values are only reduced if it is otherwise impossible to satisfy an equation.

h^{m} Precomputation (2)

■ Fixed point reached $\Rightarrow A$. cost $=h^{m}(s, A)$ for all $A \in S$.

- Intuition:

■ cost values satisfy h^{m} equations, and
■ no larger values can satisfy the equations: initialized to ∞ and values are only reduced if it is otherwise impossible to satisfy an equation.

■ With suitable data structures, we can choose A in each iteration so that it directly gets assigned its final value (Generalized Dijkstra's algorithm).
■ With such a strategy, the runtime is polynomial for fixed m.
■ Runtime is exponential in $m \rightsquigarrow h^{m}$ typically used with $m \leq 3$

Example with $m=1$ to Initial State

$$
\begin{aligned}
& R\left(\{a\},\left\{o_{1}, o_{2}, o_{3}\right\}\right)=\left\{\left(\{a, b\}, o_{1}\right),\left(\{b\}, o_{3}\right)\right\} \\
& R\left(\{b\},\left\{o_{1}, o_{2}, o_{3}\right\}\right)=\left\{\left(\{a\}, o_{2}\right),\left(\{b\}, o_{3}\right)\right\} \\
& R\left(\{c\},\left\{o_{1}, o_{2}, o_{3}\right\}\right)=\left\{\left(\{a, b\}, o_{1}\right),\left(\{a, c\}, o_{2}\right),\left(\{b, c\}, o_{3}\right)\right\}
\end{aligned}
$$

Example with $m=1$ to Initial State

$$
\begin{aligned}
& R\left(\{a\},\left\{o_{1}, o_{2}, o_{3}\right\}\right)=\left\{\left(\{a, b\}, o_{1}\right),\left(\{b\}, o_{3}\right)\right\} \\
& R\left(\{b\},\left\{o_{1}, o_{2}, o_{3}\right\}\right)=\left\{\left(\{a\}, o_{2}\right),\left(\{b\}, o_{3}\right)\right\} \\
& R\left(\{c\},\left\{o_{1}, o_{2}, o_{3}\right\}\right)=\left\{\left(\{a, b\}, o_{1}\right),\left(\{a, c\}, o_{2}\right),\left(\{b, c\}, o_{3}\right)\right\} \\
& \frac{\{a\} \quad\{b\} \quad\{c\}}{\cos \quad 0 \quad \infty \quad \infty} \\
& \{b\}: \min \{2+\{a\} \cdot \operatorname{cost}, 2+\{b\} \cdot \operatorname{cost}\}=2
\end{aligned}
$$

Example with $m=1$ to Initial State

$$
\begin{aligned}
& R\left(\{a\},\left\{o_{1}, o_{2}, o_{3}\right\}\right)=\left\{\left(\{a, b\}, o_{1}\right),\left(\{b\}, o_{3}\right)\right\} \\
& R\left(\{b\},\left\{o_{1}, o_{2}, o_{3}\right\}\right)=\left\{\left(\{a\}, o_{2}\right),\left(\{b\}, o_{3}\right)\right\} \\
& R\left(\{c\},\left\{o_{1}, o_{2}, o_{3}\right\}\right)=\left\{\left(\{a, b\}, o_{1}\right),\left(\{a, c\}, o_{2}\right),\left(\{b, c\}, o_{3}\right)\right\}
\end{aligned}
$$

$\{b\}: \min \{2+\{a\} \cdot \operatorname{cost}, 2+\{b\} \cdot \operatorname{cost}\}=2$
$\{c\}: \min \{1+\max \{\{a\} \cdot \cos t,\{b\} \cdot \operatorname{cost}\}$,
$2+\max \{\{a\} \cdot \cos t,\{c\} \cdot \operatorname{cost}\}$,
$2+\max \{\{b\} \cdot \cos t,\{c\} \cdot \operatorname{cost}\}\}=3$

Example with $m=1$ to Initial State

$$
\begin{aligned}
& R\left(\{a\},\left\{o_{1}, o_{2}, o_{3}\right\}\right)=\left\{\left(\{a, b\}, o_{1}\right),\left(\{b\}, o_{3}\right)\right\} \\
& R\left(\{b\},\left\{o_{1}, o_{2}, o_{3}\right\}\right)=\left\{\left(\{a\}, o_{2}\right),\left(\{b\}, o_{3}\right)\right\} \\
& R\left(\{c\},\left\{o_{1}, o_{2}, o_{3}\right\}\right)=\left\{\left(\{a, b\}, o_{1}\right),\left(\{a, c\}, o_{2}\right),\left(\{b, c\}, o_{3}\right)\right\} \\
& \frac{\{a\}}{\text { cost }} 00 \begin{array}{ll}
2 & 2 b
\end{array} \\
& \hline
\end{aligned}
$$

$\{b\}: \min \{2+\{a\} \cdot \operatorname{cost}, 2+\{b\} \cdot \operatorname{cost}\}=2$
$\{c\}: \min \{1+\max \{\{a\} \cdot \operatorname{cost},\{b\} \cdot \operatorname{cost}\}$,
$2+\max \{\{a\} \cdot \cos t,\{c\} \cdot \operatorname{cost}\}$,
$2+\max \{\{b\} \cdot \cos t,\{c\} \cdot \operatorname{cost}\}\}=3$

Example with $m=1$ to Initial State

	$\{a\}$	$\{b\}$	$\{c\}$
$\cos t$	0	2	3

$$
\begin{aligned}
&\{b\}: \quad \min \{2+\{a\} \cdot \cos t, 2+\{b\} \cdot \cos t\}=2 \\
&\{c\}: \quad \min \{1+\max \{\{a\} \cdot \cos t,\{b\} \cdot \cos t\}, \\
& 2+\max \{\{a\} \cdot \cos t,\{c\} \cdot \cos t\}, \\
&2+\max \{\{b\} \cdot \cos t,\{c\} \cdot \cos t\}\}=3
\end{aligned}
$$

Fixed point reached

Example with $m=1$ to Initial State

$$
\begin{aligned}
& \begin{array}{cccc}
& \{a\} & \{b\} & \{c\} \\
\hline \text { cost } & 0 & 2 & 3
\end{array} \\
& \{b\}: \min \{2+\{a\} \cdot \operatorname{cost}, 2+\{b\} \cdot \cos t\}=2 \\
& \text { \{c\}: } \min \{1+\max \{\{a\} \cdot \operatorname{cost},\{b\} \cdot \operatorname{cost}\}, \\
& 2+\max \{\{a\} \cdot \cos t,\{c\} \cdot \operatorname{cost}\} \text {, } \\
& 2+\max \{\{b\} \cdot \cos t,\{c\} \cdot \operatorname{cost}\}\}=3
\end{aligned}
$$

Fixed point reached

$$
\begin{aligned}
h^{1}(I,\{a, b, c\}) & =\max \left\{h^{1}(I,\{a\}), h^{1}(I,\{b\}), h^{1}(I,\{c\})\right\} \\
& =\max \{0,2,3\}=3
\end{aligned}
$$

Example with $m=2$ to Initial State

$$
\begin{array}{ccccccc}
& \{a\} & \{b\} & \{c\} & \{a, b\} & \{a, c\} & \{b, c\} \\
\hline \operatorname{cost} & 0 & \infty & \infty & \infty & \infty & \infty
\end{array}
$$

$\{b\}: \quad \min \{2+\{a\} \cdot \cos t, 2+\{b\} \cdot \cos t\}=2$

Example with $m=2$ to Initial State

$$
\begin{array}{rccccc}
& \{a\} & \{b\} & \{c\} & \{a, b\} & \{a, c\} \\
\hline \cos t & 0 & 2 & \infty & \infty & \infty \\
\infty & \infty \\
\{b\}: & \min \{2+\{a\} \cdot \cos t, 2+\{b\} \cdot \cos t\}=2 & \\
\{a, b\}: & \min \{2+\{b\} \cdot \cos t\}=4
\end{array}
$$

Example with $m=2$ to Initial State

$$
\begin{array}{rccccc}
& \{a\} & \{b\} & \{c\} & \{a, b\} & \{a, c\} \\
\hline \cos t & 0 & 2 & \infty & 4 & \infty \\
\{b\} \\
\{b\}: & \min \{2+\{a\} \cdot \cos t, 2+\{b\} \cdot \cos t\}=2 \\
\{a, b\}: & \min \{2+\{b\} \cdot \cos t\}=4 \\
\{c\}: & \min \{1+\{a, b\} \cdot \cos t, 2+\{a, c\} \cdot \cos t, 2+\{b, c\} \cdot \cos t\}=5
\end{array}
$$

Example with $m=2$ to Initial State

$$
\begin{array}{rccccc}
& \{a\} & \{b\} & \{c\} & \{a, b\} & \{a, c\} \\
\hline \cos t & 0 & 2 & 5 & 4 & \infty \\
\hline
\end{array} \quad \begin{aligned}
& \infty \\
& \{b\}: \\
& \{a, b\}: \\
& \{c\}: \\
& \min \{2+\{a\} \cdot \min \{2+\{b\} \cdot \cos t, 2+\{b\} \cdot \cos t\}=2 \\
& \{a, c\}: \\
& \{\min \{1+\{a, b\} \cdot \cos t, 2+\{a, c\} \cdot \cos t, 2+\{b, c\} \cdot \cos t\}=5 \\
& \{1+\{a, b\} \cdot \cos t, 2+\{b, c\} \cdot \cos t\}=5
\end{aligned}
$$

Example with $m=2$ to Initial State

\[

\]

Example with $m=2$ to Initial State

$$
\begin{aligned}
& \begin{array}{ccccccc}
& \{a\} & \{b\} & \{c\} & \{a, b\} & \{a, c\} & \{b, c\} \\
\hline \text { cost } & 0 & 2 & 5 & 4 & 5 & 7
\end{array} \\
& \{b\}: \quad \min \{2+\{a\} \cdot \cos t, 2+\{b\} \cdot \cos t\}=2 \\
& \{a, b\}: \quad \min \{2+\{b\} \cdot \cos t\}=4 \\
& \{c\}: \min \{1+\{a, b\} \cdot \cos t, 2+\{a, c\} \cdot \cos t, 2+\{b, c\} \cdot \cos t\}=5 \\
& \{a, c\}: \quad \min \{1+\{a, b\} \cdot \cos t, 2+\{b, c\} \cdot \cos t\}=5 \\
& \{b, c\}: \min \{2+\{a, c\} \cdot \cos t, 2+\{b, c\} \cdot \cos t\}=7 \\
& h^{2}(I,\{a, b, c\})=\max \left\{h^{2}(I,\{a\}), h^{2}(I,\{b\}), h^{2}(I,\{c\})\right\} \\
& \left.h^{2}(I,\{a, b\}), h^{2}(I,\{a, c\}), h^{2}(I,\{b, c\})\right\} \\
& =\max \{0,2,5,4,5,7\}=7
\end{aligned}
$$

Summary

Summary

- Critical path heuristic h^{m} estimates the cost of reaching a set ($\hat{=}$ conjunction) of variables as the cost of reaching the most expensive subset of size at most m.

■ h^{m} computation is polynomial for fixed m.

- h^{m} computation is exponential in m.

■ In practice, we use $m \in\{1,2,3\}$.

