
Planning and Optimization
E13. Merge-and-Shrink: Pruning and Usage in Practise

Malte Helmert and Gabriele Röger

Universität Basel

November 22, 2023

Pruning Merge-and-Shrink in Practise Literature Summary

Pruning

Pruning Merge-and-Shrink in Practise Literature Summary

Merge-and-Shrink

Merge & Shrink

Synchronized Product

Factored Transition Systems

Merge & Shrink Algorithm

Heuristic Representation

Heuristic Properties

Strategies

Label Reduction

Pruning

Pruning Merge-and-Shrink in Practise Literature Summary

Alive States

0 1 2 3

4 5

6 7

reachable

backward-reachable

state s is reachable if we can reach it from the initial state

state s is backward-reachable if we can reach the goal from s

state s is alive if it is reachable and backward-reachable
→ only alive states can be traversed by a solution

a state s is dead if it is not alive.

Pruning Merge-and-Shrink in Practise Literature Summary

Pruning States (1)

If in a factor, state s is dead/not backward-reachable then all
states that “cover” s in a synchronized product are dead/not
backward-reachable in the synchronized product.

Removing such states and all adjacent transitions in a factor
does not remove any solutions from the synchronized product.

This pruning leads to states in the original state space for
which the merge-and-shrink abstraction does not define an
abstract state.
→ use heuristic estimate ∞

Pruning Merge-and-Shrink in Practise Literature Summary

Pruning States (2)

Keeping exactly all backward-reachable states we still obtain
safe, consistent, goal-aware and admissible (with conservative
transformations) or perfect heuristics (with exact
transformations).

Pruning unreachable, backward-reachable states can render
the heuristic unsafe because pruned states lead to infinite
estimates.

However, all reachable states in the original state space will
have admissible estimates, so we can use the heuristic like an
admissible one in a forward state-space search such as A∗(but
not in other contexts like such as orbit search).
We usually prune all dead states to keep the factors small.

Pruning Merge-and-Shrink in Practise Literature Summary

Merge-and-Shrink in Practise

Pruning Merge-and-Shrink in Practise Literature Summary

Merge-and-Shrink

Merge-and-Shrink is a general framework.

The full framework also covers label reduction and pruning.

For all transformations, we need to select a strategy.
merge, shrink, label reduction, pruning strategy

The general strategy orchestrates the tranformations.
How can this look like in practise?

Pruning Merge-and-Shrink in Practise Literature Summary

Merge-and-Shrink in Fast Downward

Input: Factored transition system F , merge strategy MS, shrink strategy SS,
prune strategy PS, label reduction strategy LRS, size limit N ∈ N.

Output: Trans. system T and mapping σ from states of
⊗

F to states of T .

▷ Copy input factored transition system, compute Σ to represent the
identity state mapping on

⊗
F ′, set λ to the identity label mapping.

⟨F ′,Σ, λ⟩ ← ⟨F , {πT | T ∈ F ′}, id⟩

for T ∈ F do
▷ Prune atomic factor T with PS.
⟨F ′,Σ, λ⟩ ← ComposeTransformation(Prune(F ′, T))

end for
. . .

Pruning Merge-and-Shrink in Practise Literature Summary

Merge-and-Shrink in Fast Downward (cont’d)

while |F ′| > 1 do
▷ With MS, select two factors from F to be merged in this iteration.
T1, T2,← Select(F ′)

▷ With LRS, apply a label reduction to F .
⟨F ′,Σ, λ⟩ ← ComposeTransformation(LabelReduction(F ′))

▷ With SS, shrink T1 and T2 so that the size of their product respects N.
⟨F ′,Σ, λ⟩ ← ComposeTransformation(Shrink(F ′, T1, T2,N))

▷ With LRS, apply a label reduction to F .
⟨F ′,Σ, λ⟩ ← ComposeTransformation(LabelReduction(F ′))

▷ Apply the merge transformation.
⟨F ′,Σ, λ⟩ ← ComposeTransformation(Merge(F ′, T1, T2))

▷ With PS, prune the product factor T ⊗ of T1 and T2.
⟨F ′,Σ, λ⟩ ← ComposeTransformation(Prune(F ′, T ⊗))

end while
return single elements T ∈ F and σ ∈ Σ

Pruning Merge-and-Shrink in Practise Literature Summary

Stopping Early

Merge-and-shrink has significant precomputation time before
we can start the search.

We typically stop the algorithm after a preset time
(e.g. half of the time that is overall available).

The factored transition system then still contains several
factors. Each of them induces an individual heuristic.

We can combine them by taking the maximum or use a
generalization of operator cost partitioning (cf. Ch. G7/8) to
labels to obtain better estimates.

Cost partitioning benefits from additional snapshots of factors
from several iterations of merge-and-shrink.

State of the art: snapshots and saturated cost partitioning (Ch.G8)

Pruning Merge-and-Shrink in Practise Literature Summary

Literature

Pruning Merge-and-Shrink in Practise Literature Summary

Literature (1)

References on merge-and-shrink abstractions:

Klaus Dräger, Bernd Finkbeiner and Andreas Podelski.
Directed Model Checking with Distance-Preserving
Abstractions.
Proc. SPIN 2006, pp. 19–34, 2006.
Introduces merge-and-shrink abstractions (for model checking)
and DFP merging strategy.

Malte Helmert, Patrik Haslum and Jörg Hoffmann.
Flexible Abstraction Heuristics for Optimal Sequential
Planning.
Proc. ICAPS 2007, pp. 176–183, 2007.
Introduces merge-and-shrink abstractions for planning.

Pruning Merge-and-Shrink in Practise Literature Summary

Literature (2)

Raz Nissim, Jörg Hoffmann and Malte Helmert.
Computing Perfect Heuristics in Polynomial Time:
On Bisimulation and Merge-and-Shrink Abstractions
in Optimal Planning.
Proc. IJCAI 2011, pp. 1983–1990, 2011.
Introduces bisimulation-based shrinking.

Malte Helmert, Patrik Haslum, Jörg Hoffmann
and Raz Nissim.
Merge-and-Shrink Abstraction: A Method
for Generating Lower Bounds in Factored State Spaces.
Journal of the ACM 61 (3), pp. 16:1–63, 2014.
Detailed journal version of the previous two publications.

Pruning Merge-and-Shrink in Practise Literature Summary

Literature (3)

Silvan Sievers, Martin Wehrle and Malte Helmert.
Generalized Label Reduction for Merge-and-Shrink Heuristics.
Proc. AAAI 2014, pp. 2358–2366, 2014.
Introduces modern version of label reduction.
(There was a more complicated version before.)

Gaojian Fan, Martin Müller and Robert Holte.
Non-linear merging strategies for merge-and-shrink
based on variable interactions.
Proc. SoCS 2014, pp. 53–61, 2014.
Introduces UMC and MIASM merging strategies

Pruning Merge-and-Shrink in Practise Literature Summary

Literature (4)

Malte Helmert, Gabriele Röger and Silvan Sievers.
On the Expressive Power of Non-Linear Merge-and-Shrink
Representations.
Proc. ICAPS 2015, pp. 106–1014, 2015.
Shows that linear merging can require a super-polynomial
blow-up in representation size.

Silvan Sievers and Malte Helmert.
Merge-and-Shrink: A Compositional Theory of
Transformations of Factored Transition Systems.
JAIR 71, pp. 781–883, 2021.
Detailed theoretical analysis of task transformations as
sequence of transformations.

Pruning Merge-and-Shrink in Practise Literature Summary

Literature (5)

Silvan Sievers, Florian Pommerening , Thomas Keller and
Malte Helmert.
Cost-Partitioned Merge-and-Shrink Heuristics for Optimal
Classical Planning.
Proc. IJCAI 2020, pp. 4152–4160, 2020.
Extends saturated cost partitioning to merge-and-shrink.

Pruning Merge-and-Shrink in Practise Literature Summary

Summary

Pruning Merge-and-Shrink in Practise Literature Summary

Summary

Pruning is a transformation that is used to keep the size of
the factors small. It depends on the intended application how
aggressive the pruning can be.

In practise, it is beneficial to set a time limit for
merge-and-shrink. The factors can be considered as individual
admissible heuristics.

	Pruning
	

	Merge-and-Shrink in Practise
	

	Literature
	

	Summary
	

