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Reminder: Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task [1

F:= F()
while |F| > 1:
select type € {merge, shrink}
if type = merge:
select 71,72 € F
F:=(F\{T1, 2}) U{TL ® T2}
if type = shrink:
select T € F
choose an abstraction mapping 8 on T
F=(F\{T}Hu{T"}

return the remaining factor 7% in F

Remaining Question:
m Which abstractions to select for merging? ~~ merge strategy
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Linear vs. Non-linear Merge Strategies

Linear Merge Strategy

In each iteration after the first, choose the abstraction computed
in the previous iteration as 7;.

Rationale: only maintains one “complex” abstraction at a time

m Fully defined by an ordering of atomic projections/variables.

m Each merge-and-shrink heuristic computed with a non-linear
merge strategy can also be computed with a linear merge
strategy.

m However, linear merging can require a super-polynomial
blow-up of the final representation size.

m Recent research turned from linear to non-linear strategies,
also because better label reduction techniques (later in this
chapter) enabled a more efficient computation.
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Classes of Merge Strategies

We can distinguish two major types of merge strategies:

m precomputed merge strategies fix a unique merge order
up-front.
One-time effort but cannot react to other transformations
applied to the factors.

m stateless merge strategies only consider the current FTS and
decide what factors to merge.
Typically computing a score for each pair of factors and
naturally non-linear; easy to implement but cannot capture
dependencies between more than two factors.

Hybrid strategies combine ideas from precomputed and stateless
strategies.
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Example Linear Precomputed Merge Strategy

Idea: Use similar causal graph criteria as for growing patterns.

Example: Strategy of hypn

hynny: Ordering of atomic projections

m Start with a goal variable.

m Add variables that appear in preconditions of operators
affecting previous variables.

m If that is not possible, add a goal variable.

Rationale: increases h quickly
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Example Non-linear Precomputed Merge Strategy

Idea: Build clusters of variables with strong interactions and first
merge variables within each cluster.

Example: MIASM (“maximum intermediate abstraction size
minimizing merging strategy")

MIASM strategy

m Measure interaction by ratio of unnecessary states in the
merged system (= states not traversed by any abstract plan).

m Best-first search to identify interesting variable sets.

m Disjoint variable sets chosen by a greedy algorithm for
maximum weighted set packing.

Rationale: increase power of pruning (cf. next chapter)
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Example Non-linear Stateless Merge Strategy

Idea: Preferrably merge transition systems that must synchronize
on labels that occur close to a goal state.

Example: DFP (named after Drager, Finkbeiner and Podelski)

DFP strategy

m labelrank(¢,T) = min{h*(t) | (s, ¢, t) transition in 7T}
m score(T,T') = min{max{labelrank(¢, T), labelrank(¢, T")} |
¢ label in T and 7'}

m Select two transition systems with minimum score.

Rationale: abstraction fine-grained in the goal region,
which is likely to be searched by A*.
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Example Hybrid Merge Strategy

Idea: first combine the variables within each strongly connected
component of the causal graph.

Example: SCC framework

SCC strategy

m Compute strongly connected components of causal graph
m Secondary strategies for order in which

m the SCCs are considered (e.g. topologic order),
m the factors within an SCC are merged, and
m the resulting product systems are merged.

Rationale: reflect strong interactions of variables well

State of the art;: SCC+DFP or a stateless MIASM variant
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T 0,0 ,p,p',q

Whenever there is a transition with label o’ there is also a

transition with label o. If 0/ is not cheaper than o, we can always
use the transition with o.

Idea: Replace o and o’ with label o” with cost of o
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Label Reduction: Motivation (2)

o",p,p'q

7'/

States s and t are not bisimilar due to labels p and p’. In 77 they
label the same (parallel) transitions. If p and p’ have the same
cost, in such a situation there is no need for distinguishing them.

Idea: Replace p and p’ with label p” with same cost.
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Label Reduction: Motivation (3)

1" /!
oL,p,q

T

Label reductions reduce the time and memory requirement for
merge and shrink steps and enable coarser bisimulation
abstractions.

When is label reduction a conservative transformation?
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Label Reduction: Definition

Definition (Label Reduction)

Let F be a factored transition system with label set L and label
cost function c¢. A label reduction (A, ¢’) for F is given by a
function A\ : L — L', where L’ is an arbitrary set of labels, and a
label cost function ¢’ on L’ such that for all £ € L, ¢/(A\(¢)) < c(¥).

For T =(S,L,c, T,sp, S«) € F the label-reduced transition system
is T = (S, L'/, {(s,\N(£), ) | (s,£,t) € T}, s0,5,).

The label-reduced FTS is FA<) = {TXe) | T € F}.

L'NL#0and L' =L are allowed.

Label Reduction Summar,
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Label Reduction is Conservative

Theorem (Label Reduction is Safe)

Let F be a factored transition systems and (\,c’) be a
label-reduction for F.
The transformation (F, id, A, F»<)) is conservative.

(Proof omitted.)
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Label Reduction is Conservative

Theorem (Label Reduction is Safe)

Let F be a factored transition systems and (\,c’) be a
label-reduction for F.
The transformation (F, id, A, F»<)) is conservative.

(Proof omitted.)

We can use label reduction as an additional possible step in
merge-and-shrink.
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More Terminology

Let F be a factored transition systems with labels L. Let £,¢' € L
be labels and let 7 € F.

m Label Zis alive in F if all 7/ € F have some transition labelled
with £. Otherwise, /¢ is dead.

m Label 7 locally subsumes label ¢ in T if for all transitions
(s,0',t) of T there is also a transition (s, ¢, t) in 7.
m / globally subsumes ¢ if it locally subsumes ¢ in all 7/ € F.

m ¢ and ¢ are locally equivalent in 7T if they label the same
transitions in 7T, i.e. £ locally subsumes ¢’ in T and vice versa.

m ¢ and ¢ are T-combinable if they are locally equivalent in all
transition systems 7' € F\ {T}.
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Exact Label Reduction

Theorem (Criteria for Exact Label Reduction)

Let F be a factored transition systems with cost function ¢ and
label set L that contains no dead labels.
Let (X, c’) be a label-reduction for F such that A combines labels
{1 and {5 and leaves other labels unchanged. The transformation
from F to FN) s exact iff c(£y) = c(£2), ¢/(M(€)) = c(¢) for all
Lel, and

m V1 globally subsumes {5, or

m V5 globally subsumes {1, or

m /1 and V> are T -combinable for some T € F.

(Proof omitted.)
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Back to Example (1)

Label o globally subsumes label o’.
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o".p,p'q

T’

Labels p and p’ are T-combinable.
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Computation of Exact Label Reduction (1)

m For given labels /1, /5, the criteria can be tested in low-order
polynomial time.

m Finding globally subsumed labels involves finding subset
relationsships in a set family.
~> no linear-time algorithms known

m The following algorithm exploits only 7T-combinability.
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Computation of Exact Label Reduction (2)

eq; := set of label equivalence classes of 7; € F

Label-reduction based on 7;-combinability

eq :={[l]~. | L€ Ll ~c 0" iff c(') = c(¢")}
for j e {1,...,|F|}\ {i}

Refine eq with eq;
// two labels are in the same set of eq iff they have
// the same cost and are locally equivalent in all 7; # 7;.
A=id
for B € eq

lhew = new label

¢/ (lnew) := cost of labels in B

for (€ B

>\(£) = gnew
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Summary

m There is a wide range of merge strategies. We only covered
some important ones.

m Label reduction is crucial for the performance of the
merge-and-shrink algorithm, especially when using bisimilarity
for shrinking.
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