Planning and Optimization
 E10. Merge-and-Shrink: Algorithm

Malte Helmert and Gabriele Röger

Universität Basel
November 15, 2023

Content of this Course

Generic Algorithm

Merge-and-Shrink

Generic Merge-and-shrink Abstractions: Outline

Using the results of the previous chapter, we can develop a generic abstraction computation procedure that takes all state variables into account.

- Initialization: Compute the FTS consisting of all atomic projections.
■ Loop: Repeatedly apply a transformation to the FTS.
- Merging: Combine two factors by replacing them with their synchronized product.
- Shrinking: If the factors are too large, make one of them smaller by abstracting it further (applying an arbitrary abstraction to it).
- Termination: Stop when only one factor is left.

The final factor is then used for an abstraction heuristic.

Generic Algorithm Template

Generic Merge \& Shrink Algorithm for planning task Π

$$
F:=F(\Pi)
$$

while $|F|>1$:
select type $\in\{$ merge, shrink $\}$
if type = merge:

$$
\text { select } \mathcal{T}_{1}, \mathcal{T}_{2} \in F
$$

$$
F:=\left(F \backslash\left\{\mathcal{T}_{1}, \mathcal{T}_{2}\right\}\right) \cup\left\{\mathcal{T}_{1} \otimes \mathcal{T}_{2}\right\}
$$

if type $=$ shrink:

$$
\text { select } \mathcal{T} \in F
$$

$$
\text { choose an abstraction mapping } \beta \text { on } \mathcal{T}
$$

$$
F:=(F \backslash\{\mathcal{T}\}) \cup\left\{\mathcal{T}^{\beta}\right\}
$$

return the remaining factor \mathcal{T}^{α} in F
In Ch. E12 and E13, we will include more transformation types (label reduction and pruning)

Merge-and-Shrink Strategies

Choices to resolve to instantiate the template:
■ When to merge, when to shrink?
\rightsquigarrow general strategy
■ Which abstractions to merge?
\rightsquigarrow merge strategy
■ Which abstraction to shrink, and how to shrink it (which β)? \rightsquigarrow shrink strategy

Merge-and-Shrink Strategies

Choices to resolve to instantiate the template:
■ When to merge, when to shrink?
\rightsquigarrow general strategy
■ Which abstractions to merge?
\rightsquigarrow merge strategy
■ Which abstraction to shrink, and how to shrink it (which β)? \rightsquigarrow shrink strategy
merge and shrink strategies $\rightsquigarrow \mathrm{Ch}$. E11/E12

General Strategy

A typical general strategy:

- define a limit N on the number of states allowed in each factor

■ in each iteration, select two factors we would like to merge

- merge them if this does not exhaust the state number limit
- otherwise shrink one or both factors just enough to make a subsequent merge possible

Example

Back to the Running Example

Logistics problem with one package, two trucks, two locations:
■ state variable package: $\{L, R, A, B\}$

- state variable truck $\mathrm{A}:\{L, R\}$
- state variable truck $\mathrm{B}:\{L, R\}$

Initialization Step: Atomic Projection for Package

$\mathcal{T}^{\pi}{ }^{\text {\{package }\}}$:

Initialization Step: Atomic Projection for Truck A

$\mathcal{T}^{\pi} \boldsymbol{q}_{\text {truck } \mathrm{A}\}}:$

Initialization Step: Atomic Projection for Truck B

$\mathcal{T}^{\pi_{\text {\{truck } \mathrm{B}\}}}$:

current FTS: $\left\{\mathcal{T}^{\pi_{\text {\{package }\}}}, \mathcal{T}^{\pi_{\{\text {truck A }\}}}, \mathcal{T}^{\left.\pi_{\{\text {truck B }\}}\right\}}\right.$

First Merge Step

$$
\mathcal{T}_{1}:=\mathcal{T}_{\{\text {pacalase }\}} \otimes \mathcal{T}_{\text {\{truck A\} }}^{\pi_{\text {A }}}:
$$

current FTS: $\left\{\mathcal{T}_{1}, \mathcal{T}^{\left.\pi_{\{\text {truck } \mathrm{B}\}}\right\}}\right.$

Need to Shrink?

$■$ With sufficient memory, we could now compute $\mathcal{T}_{1} \otimes \mathcal{T}^{\pi_{\{\text {truck } \mathrm{B}\}}}$ and recover the full transition system of the task.

- However, to illustrate the general idea, we assume that memory is too restricted: we may never create a factor with more than 8 states.
■ To make the product fit the bound, we shrink \mathcal{T}_{1} to 4 states. We can decide freely how exactly to abstract \mathcal{T}_{1}.
- In this example, we manually choose an abstraction that leads to a good result in the end. Making good shrinking decisions algorithmically is the job of the shrink strategy.

First Shrink Step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

First Shrink Step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

First Shrink Step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

First Shrink Step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

First Shrink Step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

First Shrink Step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

First Shrink Step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

First Shrink Step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

First Shrink Step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

First Shrink Step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

current FTS: $\left\{\mathcal{T}_{2}, \mathcal{T}^{\left.\pi_{\{\text {truck B }\}}\right\}}\right.$

Second Merge Step

$$
\mathcal{T}_{3}:=\mathcal{T}_{2} \otimes \mathcal{T}^{\pi_{\{\text {truck } \mathrm{B}\}}}
$$

current FTS: $\left\{\mathcal{T}_{3}\right\}$

Another Shrink Step?

- At this point, merge-and-shrink construction stops. The distances in the final factor define the heuristic function.
- If there were further state variables to integrate, we would shrink again, e.g., leading to the following abstraction (again with four states):

- We get a heuristic value of 3 for the initial state, better than any PDB heuristic that is a proper abstraction.
- The example generalizes to arbitrarily many trucks, even if we stick to the fixed size limit of 8 .

Maintaining the Abstraction

Merge-and-Shrink

Generic Algorithm Template

Generic Merge \& Shrink Algorithm for planning task Π

$F:=F(\Pi)$
while $|F|>1$:
select type $\in\{$ merge, shrink $\}$
if type $=$ merge:

$$
\text { select } \mathcal{T}_{1}, \mathcal{T}_{2} \in F
$$

$$
F:=\left(F \backslash\left\{\mathcal{T}_{1}, \mathcal{T}_{2}\right\}\right) \cup\left\{\mathcal{T}_{1} \otimes \mathcal{T}_{2}\right\}
$$

if type $=$ shrink:

$$
\text { select } \mathcal{T} \in F
$$

$$
\text { choose an abstraction mapping } \beta \text { on } \mathcal{T}
$$

$$
F:=(F \backslash\{\mathcal{T}\}) \cup\left\{\mathcal{T}^{\beta}\right\}
$$

return the remaining factor \mathcal{T}^{α} in F

■ The algorithm computes an abstract transition system.
\square For the heuristic evaluation, we need an abstraction.
■ How to maintain and represent the corresponding abstraction?

The Need for Succinct Abstractions

■ One major difficulty for non-PDB abstraction heuristics is to succinctly represent the abstraction.
■ For pattern databases, this is easy because the abstractions projections - are very structured.
■ For less rigidly structured abstractions, we need another idea.

How to Represent the Abstraction? (1)

Idea: the computation of the abstraction follows the sequence of product computations

■ For the atomic abstractions $\pi_{\{v\}}$, we generate a one-dimensional table that denotes which value in dom(v) corresponds to which abstract state in $\mathcal{T}^{\pi_{\{v\}}}$.

■ During the merge (product) step $\mathcal{A}:=\mathcal{A}_{1} \otimes \mathcal{A}_{2}$, we generate a two-dimensional table that denotes which pair of states of \mathcal{A}_{1} and \mathcal{A}_{2} corresponds to which state of \mathcal{A}.

- During the shrink (abstraction) steps, we make sure to keep the table in sync with the abstraction choices.

How to Represent the Abstraction? (2)

Idea: the computation of the abstraction mapping follows the sequence of product computations

■ Once we have computed the final abstract transition system, we compute all abstract goal distances and store them in a one-dimensional table.

- At this point, we can throw away all the abstract transition systems - we just need to keep the tables.
- During search, we do a sequence of table lookups to navigate from the atomic abstraction states to the final abstract state and heuristic value
$\rightsquigarrow 2|V|$ lookups, $O(|V|)$ time
Again, we illustrate the process with our running example.

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic abstractions is simple. Just number the states (domain values) consecutively and generate a table of references to the states:

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic abstractions is simple. Just number the states (domain values) consecutively and generate a table of references to the states:

$$
\begin{array}{cccc}
L & R & A & B \\
\hline 0 & 1 & 2 & 3
\end{array}
$$

Abstraction Example: Merge Step

For product transition systems $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$, we again number the product states consecutively and generate a table that links state pairs of \mathcal{A}_{1} and \mathcal{A}_{2} to states of \mathcal{A} :

Abstraction Example: Merge Step

For product transition systems $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$, we again number the product states consecutively and generate a table that links state pairs of \mathcal{A}_{1} and \mathcal{A}_{2} to states of \mathcal{A} :

Abstraction Example: Merge Step

For product transition systems $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$, we again number the product states consecutively and generate a table that links state pairs of \mathcal{A}_{1} and \mathcal{A}_{2} to states of \mathcal{A} :

	$s_{2}=0$	$s_{2}=1$
$s_{1}=0$	0	1
$s_{1}=1$	2	3
$s_{1}=2$	4	5
$s_{1}=3$	6	7

Maintaining the Abstraction when Shrinking

- The hard part in representing the abstraction is to keep it consistent when shrinking.
- In theory, this is easy to do:
- When combining states i and j, arbitrarily use one of them (say i) as the number of the new state.
- Find all table entries in the table for this abstraction which map to the other state j and change them to i.
■ However, doing a table scan each time two states are combined is very inefficient.
- Fortunately, there also is an efficient implementation which takes constant time per combination.

Maintaining the Abstraction Efficiently

■ Associate each abstract state with a linked list, representing all table entries that map to this state.

- Before starting the shrink operation, initialize the lists by scanning through the table, then discard the table.
■ While shrinking, when combining i and j, splice the list elements of j into the list elements of i.

■ For linked lists, this is a constant-time operation.
■ Once shrinking is completed, renumber all abstract states so that there are no gaps in the numbering.

- Finally, regenerate the mapping table from the linked list information.

Abstraction Example: Shrink Step

Representation before shrinking:

	$s_{2}=0$	$s_{2}=1$
$s_{1}=0$	0	1
$s_{1}=1$	2	3
$s_{1}=2$	4	5
$s_{1}=3$	6	7

Abstraction Example: Shrink Step

1. Convert table to linked lists and discard it.

$$
\begin{aligned}
& \text { list }_{0}=\{(0,0)\} \\
& \text { list }_{1}=\{(0,1)\} \\
& \text { list }_{2}=\{(1,0)\} \\
& \text { list }_{3}=\{(1,1)\} \\
& \text { list }_{4}=\{(2,0)\} \\
& \text { list }_{5}=\{(2,1)\} \\
& \text { list }_{6}=\{(3,0)\} \\
& \text { list }_{7}=\{(3,1)\}
\end{aligned}
$$

	$s_{2}=0$	$s_{2}=1$
$s_{1}=0$	0	1
$s_{1}=1$	2	3
$s_{1}=2$	4	5
$s_{1}=3$	6	7

Abstraction Example: Shrink Step

2. When combining i and j, splice list $_{j}$ into list $_{i}$.

$$
\begin{aligned}
& \text { list }_{0}=\{(0,0)\} \\
& \text { list }_{1}=\{(0,1)\} \\
& \text { list }_{2}=\{(1,0)\} \\
& \text { list }_{3}=\{(1,1)\} \\
& \text { list }_{4}=\{(2,0)\} \\
& \text { list }_{5}=\{(2,1)\} \\
& \text { list }_{6}=\{(3,0)\} \\
& \text { list }_{7}=\{(3,1)\}
\end{aligned}
$$

Abstraction Example: Shrink Step

2. When combining i and j, splice list $_{j}$ into list $_{j}$.

$$
\begin{aligned}
& \text { list }_{0}=\{(0,0)\} \\
& \text { list }_{1}=\{(0,1)\} \\
& \text { list }_{2}=\{(1,0),(1,1)\} \\
& \text { list }_{3}=\emptyset \\
& \text { list }_{4}=\{(2,0)\} \\
& \text { list }_{5}=\{(2,1)\} \\
& \text { list }_{6}=\{(3,0)\} \\
& \text { list }_{7}=\{(3,1)\}
\end{aligned}
$$

Abstraction Example: Shrink Step

2. When combining i and j, splice list $_{j}$ into list $_{j}$.

$$
\begin{aligned}
& \text { list }_{0}=\{(0,0)\} \\
& \text { list }_{1}=\{(0,1)\} \\
& \text { list }_{2}=\{(1,0),(1,1)\} \\
& \text { list }_{3}=\emptyset \\
& \text { list }_{4}=\{(2,0)\} \\
& \text { list }_{5}=\{(2,1)\} \\
& \text { list }_{6}=\{(3,0)\} \\
& \text { list }_{7}=\{(3,1)\}
\end{aligned}
$$

Abstraction Example: Shrink Step

2. When combining i and j, splice list $_{j}$ into list $_{j}$.

$$
\begin{aligned}
& \text { list }_{0}=\{(0,0)\} \\
& \text { list }_{1}=\{(0,1)\} \\
& \text { list }_{2}=\{(1,0),(1,1)\} \\
& \text { list }_{3}=\emptyset \\
& \text { list }_{4}=\{(2,0),(2,1)\} \\
& \text { list }_{5}=\emptyset \\
& \text { list }_{6}=\{(3,0)\} \\
& \text { list }_{7}=\{(3,1)\}
\end{aligned}
$$

Abstraction Example: Shrink Step

2. When combining i and j, splice list $_{j}$ into list $_{j}$.

$$
\begin{aligned}
& \text { list }_{0}=\{(0,0)\} \\
& \text { list }_{1}=\{(0,1)\} \\
& \text { list }_{2}=\{(1,0),(1,1)\} \\
& \text { list }_{3}=\emptyset \\
& \text { list }_{4}=\{(2,0),(2,1)\} \\
& \text { list }_{5}=\emptyset \\
& \text { list }_{6}=\{(3,0)\} \\
& \text { list }_{7}=\{(3,1)\}
\end{aligned}
$$

Abstraction Example: Shrink Step

2. When combining i and j, splice list $_{j}$ into list $_{j}$.

$$
\begin{aligned}
& \text { list }_{0}=\{(0,0)\} \\
& \text { list }_{1}=\{(0,1)\} \\
& \text { list }_{2}=\{(1,0),(1,1)\} \\
& \text { list }_{3}=\emptyset \\
& \text { list }_{4}=\{(2,0),(2,1)\} \\
& \text { list }_{5}=\emptyset \\
& \text { list }_{6}=\{(3,0),(3,1)\} \\
& \text { list }_{7}=\emptyset
\end{aligned}
$$

Abstraction Example: Shrink Step

2. When combining i and j, splice list $_{j}$ into list $_{j}$.

$$
\begin{aligned}
& \text { list }_{0}=\{(0,0)\} \\
& \text { list }_{1}=\{(0,1)\} \\
& \text { list }_{2}=\{(1,0),(1,1)\} \\
& \text { list }_{3}=\emptyset \\
& \text { list }_{4}=\{(2,0),(2,1)\} \\
& \text { list }_{5}=\emptyset \\
& \text { list }_{6}=\{(3,0),(3,1)\} \\
& \text { list }_{7}=\emptyset
\end{aligned}
$$

Abstraction Example: Shrink Step

2. When combining i and j, splice list $_{j}$ into list $_{j}$.

$$
\begin{aligned}
& \text { list }_{0}=\{(0,0)\} \\
& \text { list }_{1}=\{(0,1)\} \\
& \text { list }_{2}=\{(1,0),(1,1)\} \\
& \text { list }_{3}=\emptyset \\
& \text { list }_{4}=\{(2,0),(2,1), \\
& \\
& \text { list }_{5}=\emptyset \\
& \text { list }_{6}=\emptyset \\
& \text { list }_{7}=\emptyset
\end{aligned}
$$

Abstraction Example: Shrink Step

2. When combining i and j, splice list $_{j}$ into list $_{j}$.

$$
\begin{aligned}
& \text { list }_{0}=\{(0,0)\} \\
& \text { list }_{1}=\{(0,1)\} \\
& \text { list }_{2}=\{(1,0),(1,1)\} \\
& \text { list }_{3}=\emptyset \\
& \text { list }_{4}=\{(2,0),(2,1), \\
& \\
& \text { list }_{5}=\emptyset \\
& \text { list }_{6}=\emptyset \\
& \text { list }_{7}=\emptyset
\end{aligned}
$$

Abstraction Example: Shrink Step

3. Renumber abstract states consecutively.

Abstraction Example: Shrink Step

3. Renumber abstract states consecutively.

Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.

Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.

$$
\begin{aligned}
\text { list }_{0} & =\{(0,0)\} \\
\text { list }_{1} & =\{(0,1)\} \\
\text { list }_{2} & =\{(1,0),(1,1)\} \\
\text { list }_{3} & =\{(2,0),(2,1), \\
& \quad(3,0),(3,1)\} \\
\text { list }_{4} & =\emptyset \\
\text { list }_{5} & =\emptyset \\
\text { list }_{6} & =\emptyset \\
\text { list }_{7} & =\emptyset
\end{aligned}
$$

	$s_{2}=0$	$s_{2}=1$
$s_{1}=0$	0	1
$s_{1}=1$	2	2
$s_{1}=2$	3	3
$s_{1}=3$	3	3

The Final Heuristic Representation

At the end, our heuristic is represented by six tables:

- three one-dimensional tables for the atomic abstractions:
- two tables for the two merge and subsequent shrink steps:

$$
\begin{array}{c|cccccc}
T_{\text {m\&s }}^{1} & s_{2}=0 & s_{2}=1 & & T_{\text {m\&s }}^{2} & s_{2}=0 & s_{2}=1 \\
\cline { 1 - 3 } & s_{1}=0 & 0 & 1 & & s_{1}=0 & 1 \\
s_{1}=1 & 2 & 2 & & s_{1}=1 & 1 & 0 \\
s_{1}=2 & 3 & 3 & & s_{1}=2 & 2 & 2 \\
s_{1}=3 & 3 & 3 & & s_{1}=3 & 3 & 3
\end{array}
$$

- one table with goal distances for the final transition system:

$$
\begin{array}{c|cccc}
T_{h} & s=0 & s=1 & s=2 & s=3 \\
\hline h(s) & 3 & 2 & 0 & 1
\end{array}
$$

Given a state $s=\{$ package $\mapsto L$, truck $\mathrm{A} \mapsto L$, truck $\mathrm{B} \mapsto R\}$, its heuristic value is then looked up as:
$■ h(s)=T_{h}\left[T_{\text {m\&s }}^{2}\left[T_{\text {m\&s }}^{1}\left[T_{\text {package }}[L], T_{\text {truck A }}[L]\right], T_{\text {truck B }}[R]\right]\right]$

Summary

Summary (1)

■ Merge-and-shrink abstractions are constructed by iteratively transforming the factored transition system of a planning task.

- Merge transformations combine two factors into their synchronized product.
- Shrink transformations reduce the size of a factor by abstracting it.

Summary (1)

■ Merge-and-shrink abstractions are constructed by iteratively transforming the factored transition system of a planning task.

- Merge transformations combine two factors into their synchronized product.
- Shrink transformations reduce the size of a factor by abstracting it.
- Merge-and-shrink abstractions are represented by a set of reference tables, one for each atomic abstraction and one for each merge-and-shrink step.
- The heuristic representation uses an additional table for the goal distances in the final abstract transition system.

Summary (2)

- Projections of SAS^{+}tasks correspond to merges of atomic factors.
■ By also including shrinking, merge-and-shrink abstractions generalize projections: they can reflect all state variables, but in a potentially lossy way.

