Planning and Optimization
E10. Merge-and-Shrink: Algorithm

Malte Helmert and Gabriele Roger

Universitat Basel

November 15, 2023

Content of this Course

— Prelude

— Foundations

— Approaches

Abstractions

:] in General
_ Delete Relaxation
| Abstraction o
Databases
— Critical Paths

— Constraints

Generic Algorithm

@00000

Generic Algorithm

Generic Algorithm Exa
0@0000

Merge-and-Shrin

Merge & Shrink }7

_{

Synchronized Product

—{ Factored Transition Systems ‘

— Merge & Shrink Algorithm |

—{ Heuristic Representation ‘

Heuristic Properties

Strategies

Label Reduction

I

Pruning

Generic Algorithm Exar o v Abstraction

[e]e] lele]e}

Generic Merge-and-shrink Abstractions: Outline

Using the results of the previous chapter, we can develop
a generic abstraction computation procedure
that takes all state variables into account.

m Initialization: Compute the FTS
consisting of all atomic projections.
m Loop: Repeatedly apply a transformation to the FTS.

m Merging: Combine two factors by replacing them
with their synchronized product.

m Shrinking: If the factors are too large,
make one of them smaller by abstracting it further
(applying an arbitrary abstraction to it).

m Termination: Stop when only one factor is left.

The final factor is then used for an abstraction heuristic.

Generic Algorithm Exar o Abstraction

000800

Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task [1

F:= F(N)
while |F| > 1:
select type € {merge, shrink}
if type = merge:
select 71,72 € F
F:=(F\{T1,72}) U{T1 ® T2}
if type = shrink:
select T € F
choose an abstraction mapping 8 on T
Fi=(F\{T})U{T?}

return the remaining factor 7% in F

In Ch. E12 and E13, we will include more transformation types
(label reduction and pruning)

Generic Algorithm
000000

Merge-and-Shrink Strategies

Choices to resolve to instantiate the template:
m When to merge, when to shrink?
~> general strategy
m Which abstractions to merge?
~> merge strategy

m Which abstraction to shrink, and how to shrink it (which 3)?
~» shrink strategy

Generic Algorithm
000000

Merge-and-Shrink Strategies

Choices to resolve to instantiate the template:

m When to merge, when to shrink?
~> general strategy

m Which abstractions to merge?
~> merge strategy

m Which abstraction to shrink, and how to shrink it (which 3)?
~» shrink strategy

merge and shrink strategies ~ Ch. E11/E12

Generic Algorithm Exar o v Abstraction

O0000e

General Strategy

A typical general strategy:
m define a limit V on the number of states allowed in each factor
m in each iteration, select two factors we would like to merge
m merge them if this does not exhaust the state number limit

m otherwise shrink one or both factors just enough
to make a subsequent merge possible

Example
0000000000

Example

Algorithm Example > the Abstraction
0®00000000 00

Back to the Running Example

Logistics problem with one package, two trucks, two locations:
m state variable package: {L, R, A, B}
m state variable truck A: {L, R}
m state variable truck B: {L, R}

Example
[e]e] lelele]ele]ele}

Initialization Step: Atomic Projection for Package

Tﬂ'{package} .

Moxxk

Example
[e]e]e] lelelelelele}

Initialization Step: Atomic Projection for Truck A

Tﬂ-{truck A} -

PAL,DAL,MBxx, PAR,DAR,MBx*x,
PBx%,DBx PB*,DBx

MALR

Example
[e]e]e]e] lelelelele}

Initialization Step: Atomic Projection for Truck B

Tﬂ-{truck B} -

PBL,DBL,MAxx, PBR,DBR,MAxx,
PAx, DA% PAx,DAx

MBLR

current FTS {Tﬂ'{package} , Tﬂ'{truck A} , Tﬂ'{truck B}}

Example straction

[o]e]e]e]e] lelelele}

First Merge Step
71 = ’Tﬂ—{package} X Tﬂ-{truck A} -

MBx*x MBx*x

current FTS: {77, T ™{tuck B} }

Algorithm Example Abstraction

Need to Shrink?

m With sufficient memory, we could now compute 77 ® T ™{truck B}
and recover the full transition system of the task.

m However, to illustrate the general idea,
we assume that memory is too restricted:
we may never create a factor with more than 8 states.

m To make the product fit the bound, we shrink 77 to 4 states.
We can decide freely how exactly to abstract 73.

m In this example, we manually choose an abstraction
that leads to a good result in the end. Making good shrinking
decisions algorithmically is the job of the shrink strategy.

Example straction
0000000800

First Shrink Step

7> := some abstraction of 71

Example straction
0000000800

First Shrink Step

7> := some abstraction of 71

Example straction
0000000800

First Shrink Step

7> := some abstraction of 71

Example straction
0000000800

First Shrink Step

7> := some abstraction of 71

Example straction
0000000800

First Shrink Step

7> := some abstraction of 71

Example straction
0000000800

First Shrink Step

7> := some abstraction of 71

Example Abstraction
0000000800

First Shrink Step

7> := some abstraction of 71

Example Abstraction
0000000800

First Shrink Step

7> := some abstraction of 71

Example VF g actio Summar

0000000800

First Shrink Step

7> := some abstraction of 71

Example VF g actio Summar

0000000800

First Shrink Step

7> := some abstraction of 71

current FTS: {7, T ™{truck B} }

Algorithm Example Abstraction
0000000080 ©

Second Merge Step

73 = 7'2 X Tﬂ-{truck B} -

MALR

current FTS: {73}

Algorithm Example Abstraction
0000000008 ©

Another Shrink Step?

m At this point, merge-and-shrink construction stops.
The distances in the final factor define the heuristic function.

m If there were further state variables to integrate,
we would shrink again, e.g., leading to the following
abstraction (again with four states):

m We get a heuristic value of 3 for the initial state,
better than any PDB heuristic that is a proper abstraction.

m The example generalizes to arbitrarily many trucks,
even if we stick to the fixed size limit of 8.

Maintaining the Abstraction

®00000000000

Maintaining the Abstraction

Generic Algorithm

Merge-and-Shrink

Merge & Shrink }7

Maintaining the Abstraction
0®0000000000

—{ Synchronized Product ‘

—{ Factored Transition Systems ‘

— Merge & Shrink Algorithm |

—{ Heuristic Representation ‘

Heuristic Properties ‘

Strategies ‘

Label Reduction ‘

I

Pruning ‘

Summar

Generic Algorithm

Maintaining the Abstraction Summary
00®000000000 00

Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task [1

F:= F(N)
while |F| > 1:
select type € {merge, shrink}
if type = merge:
select 71,72 € F
F=(F\{T1, 2}) U{T1 ® T2}
if type = shrink:
select T € F
choose an abstraction mapping 8 on T
F = (F\ {T}H U{T?}

return the remaining factor 7¢ in F

m The algorithm computes an abstract transition system.
m For the heuristic evaluation, we need an abstraction.
m How to maintain and represent the corresponding abstraction?

Algorithm Exa Maintaining the Abstraction
o 000®00000000

The Need for Succinct Abstractions

m One major difficulty for non-PDB abstraction heuristics is to
succinctly represent the abstraction.

m For pattern databases, this is easy because the abstractions —
projections — are very structured.

m For less rigidly structured abstractions, we need another idea.

Algorithm Exar o Maintaining the Abstraction

O000@0000000

How to Represent the Abstraction? (1)

Idea: the computation of the abstraction follows the sequence of
product computations
m For the atomic abstractions 7y, we generate a
one-dimensional table that denotes which value in dom(v)
corresponds to which abstract state in 7 ™{v}.
m During the merge (product) step A := A; ® Ay, we generate
a two-dimensional table that denotes which pair of states of
Aj and Aj corresponds to which state of A.

m During the shrink (abstraction) steps, we make sure to keep
the table in sync with the abstraction choices.

Algorithm Exar o Maintaining the Abstraction

000008000000

How to Represent the Abstraction? (2)

Idea: the computation of the abstraction mapping follows the
sequence of product computations

m Once we have computed the final abstract transition system,
we compute all abstract goal distances and store them in a
one-dimensional table.

m At this point, we can throw away all the abstract transition
systems — we just need to keep the tables.

m During search, we do a sequence of table lookups to navigate
from the atomic abstraction states to the final abstract state
and heuristic value
~ 2|V/| lookups, O(|V|) time

Again, we illustrate the process with our running example.

Algorithm Exa o Maintaining the Abstraction

O00000@00000

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic
abstractions is simple. Just number the states (domain values)
consecutively and generate a table of references to the states:

Mk

Algorithm Exar o Maintaining the Abstraction

O00000@00000

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic
abstractions is simple. Just number the states (domain values)
consecutively and generate a table of references to the states:

Mixxk

Igorithm Example Maintaining the Abstraction
0000000000 000000080000

Abstraction Example: Merge Step

For product transition systems A; ® A>, we again number the
product states consecutively and generate a table that links state
pairs of A; and A to states of A:

Igorithm Example Maintaining the Abstraction
0000000000 000000080000

Abstraction Example: Merge Step

For product transition systems A; ® A>, we again number the
product states consecutively and generate a table that links state
pairs of A; and A to states of A:

Algorithm Exar o Maintaining the Abstraction

O000000e0000

Abstraction Example: Merge Step

For product transition systems A; ® A>, we again number the
product states consecutively and generate a table that links state
pairs of A; and A to states of A:

‘52:0 52:1
s1=0 0 1
51:1 2 3
51 =2 4 5
s1=3 6 7

Algorithm Exa Maintaining the Abstraction
000000008000

Maintaining the Abstraction when Shrinking

m The hard part in representing the abstraction is to keep it
consistent when shrinking.
m In theory, this is easy to do:
m When combining states i and j, arbitrarily use one of them
(say i) as the number of the new state.
m Find all table entries in the table for this abstraction which
map to the other state j and change them to /.
m However, doing a table scan each time two states are
combined is very inefficient.

m Fortunately, there also is an efficient implementation which
takes constant time per combination.

Algorithm Exa Maintaining the Abstraction
000000000800

Maintaining the Abstraction Efficiently

m Associate each abstract state with a linked list, representing
all table entries that map to this state.

m Before starting the shrink operation, initialize the lists by
scanning through the table, then discard the table.

m While shrinking, when combining i and j, splice the list
elements of j into the list elements of /.

m For linked lists, this is a constant-time operation.
m Once shrinking is completed, renumber all abstract states so
that there are no gaps in the numbering.

m Finally, regenerate the mapping table from the linked list
information.

c Algorithm Ex: Maintaining the Abstraction

000000000080

Abstraction Example: Shrink Step

Representation before shrinking:

‘5220 5221
s1=0 0 1
si=1 2 3
5122 4 5
s1=3 6 7

Maintaining the Abstraction Summar

000000000080

Abstraction Example: Shrink Step

1. Convert table to linked lists and discard it.

listo = {(0,0)}

listy = {(0,1)}

list, = {(1,0)}

lists = {(1,1)}

list, = {(2,0)}

lists = {(2,1)}

lists = {(3,0)}

list; = {(3,1)}

‘ Sy = 0 Sy = 1

s51=0 0 1
S1 = 2 3
S1 = 2 4 5
s51=3 6 7

Maintaining the Abstraction

000000000080

Abstraction Example: Shrink Step

2. When combining i and j, splice /ist; into list;.

listy = (0, 0)}
list, = {(0,1)}
listy = {(10)}
lists = {(1,1)}
lists = {(2,0)}
lists = {(2,1)}
lists = {(3, 0)}
list; = {(3,1)}

Maintaining the Abstraction Summar

000000000080

Abstraction Example: Shrink Step

2. When combining i and j, splice /ist; into list;.

listy = {(0, 0)}

list, = {(0, 1)}

list; = {(1,0),(1,1)}
listy =

listy = s

Maintaining the Abstraction

000000000080

Abstraction Example: Shrink Step

2. When combining i and j, splice /ist; into list;.

listo = {(0,0)}
/iStl = {(07 1)}
list = {(1,0), (1,1)}

listy = 0

Algorithm

Abstraction Example: Shrink Step

Maintaining the Abstraction
000000000080

2. When combining i and j, splice /ist; into list;.

listy = (0, 0
list, = {(0, 1
list, = {(1,0
listy = 0
lists = {(2,0
lists = 0

Maintaining the Abstraction

000000000080

Abstraction Example: Shrink Step

2. When combining i and j, splice /ist; into list;.

listy = (0, 0)}

list, = {(0, 1)}

lists = {(1,0), (1,1)}
listy = 0

lists = {(27 0), (27 1)}
lists = 0

lists = {(3,0)}
listr = {(3,1)}

Summar

Maintaining the Abstraction

000000000080

Abstraction Example: Shrink Step

2. When combining i and j, splice /ist; into list;.

listo = {(0,0)}
G listy = {(0,1)}
/ list, = {(1,0), (1,1)}
f lists —
0 ° o lists = {(2,0), (2, 1)}
\ lists = 1]
%/ lists = {(3,0), (3,1)}

list; = @

Maintaining the Abstraction
000000000000

Abstraction Example: Shrink Step

2. When combining i and j, splice /ist; into list;.

/ ° /,fstz ={(1.0).(1.1)}

@fé”@ = e
ISl —

%/ lists = {(3,0), (3,1)}

/i5t7 = @

Maintaining the Abstraction
000000000000

Abstraction Example: Shrink Step

2. When combining i and j, splice /ist; into list;.

listo = {(0,0)}

listy = {(0,1)}

list, = {(1, 0), (1, 1)}

list; = 1]

lists = {(2,0), (2,1),
(3.0, (3. 1)}

lists = 0

lists = 0

list; = 0

Maintaining the Abstraction Summar

000000000080

Abstraction Example: Shrink Step

2. When combining i and j, splice /ist; into list;.

list; = 1]

lists = {(2,0),(2,1),
(3,0),(3,1)}

lists = 0

lists =0

Maintaining the Abstraction
000000000000

Abstraction Example: Shrink Step

3. Renumber abstract states consecutively.

listo = {(0,0)}

listy = {(0,1)}

lists = {(1,0), (1,1)}

lists = 0

lists = {(2,0), (2, 1),
(3.0).(3.1)}

lists = 0

lists =0

Maintaining the Abstraction
000000000000

Abstraction Example: Shrink Step

3. Renumber abstract states consecutively.

Maintaining the Abstraction Summar
000000000080 000

Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.

listo = {(0,0)}

listy = {(0,1)}

list, = {(1,0), (1,1)}

lists = {(2,0), (2,1),
(3,0),(3, 1)}

listy = 0

lists = 0

lists =0

Maintaining the Abstraction

c Algorithm E
OC OC 000000000080

Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.

listy = {(0,0)}
listi = {(0,1)}
list, = {(1,0),(1,1)}
lists = {(2,0), (2, 1),
(3,0),(3,1)}
listy = 0
lists = 0
lists =0
list; = 0
‘ Sy = 0 Sy = 1
s1=0 0 1
S1 = 2 2
51 =2 3 3
s1=3 3 3

Algorithm Exar o Maintaining the Abstraction

00000000000 e

The Final Heuristic Representation

At the end, our heuristic is represented by six tables:

m three one-dimensional tables for the atomic abstractions:
Tpackage ‘ L R A B TtruckA ‘ L R TtruckB ‘ L R

o 1 2 3 [0 1 [0 1
m two tables for the two merge and subsequent shrink steps:
T,.ﬁ&s ‘ 5=0 s=1 Tl_i&s ‘ 5=0 s5=1
s1=0 0 1 s1=0 1 1
s1=1 2 2 s1=1 1 0
5 =2 3 3 51 =2 2 2
51=3 3 3 51=3 3 3

m one table with goal distances for the final transition system:

Th |s=0 s=1 s=2 s=3
h(s)| 3 2 0 1

Given a state s = {package — L,truck A — L, truck B — R},
its heuristic value is then looked up as:

u h() Th[&s[&S[Tpackage[L] Ttruck A[L]] Ttruck B[R]]]

Summary
[lele}

Summary

Algorithm Xa Abstraction Summary

oeo

Summary (1)

m Merge-and-shrink abstractions are constructed by iteratively
transforming the factored transition system of a planning task.

m Merge transformations combine two factors
into their synchronized product.

m Shrink transformations reduce the size of a factor
by abstracting it.

Algorithm Abstraction Summary

oeo

Summary (1)

m Merge-and-shrink abstractions are constructed by iteratively
transforming the factored transition system of a planning task.

m Merge transformations combine two factors
into their synchronized product.

m Shrink transformations reduce the size of a factor
by abstracting it.

m Merge-and-shrink abstractions are represented by a set of
reference tables, one for each atomic abstraction and one for
each merge-and-shrink step.

m The heuristic representation uses an additional table for the
goal distances in the final abstract transition system.

Algorithm a Abstraction

Summary

Summary (2)

m Projections of SAS™ tasks correspond to
merges of atomic factors.

m By also including shrinking, merge-and-shrink abstractions
generalize projections: they can reflect all state variables,
but in a potentially lossy way.

ooe

	Generic Algorithm
	

	Example
	

	Maintaining the Abstraction
	

	Summary
	

