Planning and Optimization E10. Merge-and-Shrink: Algorithm

Malte Helmert and Gabriele Röger
Universität Basel
November 15, 2023

Planning and Optimization
November 15, 2023 - E10. Merge-and-Shrink: Algorithm

E10.1 Generic Algorithm

E10.2 Example

E10.3 Maintaining the Abstraction

E10.4 Summary

Content of this Course

Generic Merge-and-shrink Abstractions: Outline

Using the results of the previous chapter, we can develop
a generic abstraction computation procedure
that takes all state variables into account.

- Initialization: Compute the FTS consisting of all atomic projections.
- Loop: Repeatedly apply a transformation to the FTS.
- Merging: Combine two factors by replacing them with their synchronized product.
- Shrinking: If the factors are too large, make one of them smaller by abstracting it further (applying an arbitrary abstraction to it)
- Termination: Stop when only one factor is left.

The final factor is then used for an abstraction heuristic.

Generic Merge \& Shrink Algorithm for planning task Π
$F:=F(П)$
while $|F|>1$:
select type $\in\{$ merge, shrink $\}$
if type $=$ merge:
select $\mathcal{T}_{1}, \mathcal{T}_{2} \in F$
$F:=\left(F \backslash\left\{\mathcal{T}_{1}, \mathcal{T}_{2}\right\}\right) \cup\left\{\mathcal{T}_{1} \otimes \mathcal{T}_{2}\right\}$
if type $=$ shrink:
select $\mathcal{T} \in F$
choose an abstraction mapping β on \mathcal{T}
$F:=(F \backslash\{\mathcal{T}\}) \cup\left\{\mathcal{T}^{\beta}\right\}$
return the remaining factor \mathcal{T}^{α} in F
In Ch. E12 and E13, we will include more transformation types (label reduction and pruning)

Choices to resolve to instantiate the template:

- When to merge, when to shrink?
\rightsquigarrow general strategy
- Which abstractions to merge?

$$
\rightsquigarrow \text { merge strategy }
$$

- Which abstraction to shrink, and how to shrink it (which β)?
\rightsquigarrow shrink strategy
merge and shrink strategies $\rightsquigarrow \mathrm{Ch} . \mathrm{E} 11 / \mathrm{E} 12$

A typical general strategy:

- define a limit N on the number of states allowed in each factor
- in each iteration, select two factors we would like to merge
- merge them if this does not exhaust the state number limit
- otherwise shrink one or both factors just enough to make a subsequent merge possible

E10.2 Example

M. Helmert, G. Röger (Universität Basel)

E10. Merge-and-Shrink: Algorithm

Back to the Running Example

Logistics problem with one package, two trucks, two locations:

- state variable package: $\{L, R, A, B\}$
- state variable truck A: $\{L, R\}$
- state variable truck B: $\{L, R\}$

$$
\mathcal{T}^{\pi_{\{\text {package }\}}}
$$

$\mathrm{M}_{\star * *}$

Initialization Step: Atomic Projection for Package
$\mathcal{T}^{\pi_{\{\text {truck B }\}}}$

PBL,DBL,MA

$\mathrm{PA} \star, \mathrm{DA} \star$
PBR,DBR,MA**,

current FTS: $\left\{\mathcal{T}^{\pi_{\{\text {package }\}},} \mathcal{T}^{\pi_{\{\text {truck A }\}}}, \mathcal{T}^{\left.\pi_{\{\text {truck } \mathrm{B}\}}\right\}}\right.$
M. Helmert, G. Röger (Universität Basel) Planning and Optimization

Need to Shrink?

- With sufficient memory, we could now compute $\mathcal{T}_{1} \otimes \mathcal{T}^{\pi_{\{\text {truck } \mathrm{B}\}}}$ and recover the full transition system of the task.
- However, to illustrate the general idea,
we assume that memory is too restricted:
we may never create a factor with more than 8 states.
- To make the product fit the bound, we shrink \mathcal{T}_{1} to 4 states. We can decide freely how exactly to abstract \mathcal{T}_{1}.
- In this example, we manually choose an abstraction that leads to a good result in the end. Making good shrinking decisions algorithmically is the job of the shrink strategy.
current FTS: $\left\{\mathcal{T}_{1}, \mathcal{T}^{\left.\pi_{\{\text {truck B }\}}\right\}}\right.$

E10. Merge-and-Shrink: Algorithm

First Shrink Step
$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

First Shrink Step
$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

M. Helmert, G. Röger (Universität Basel) Planning and Optimization

First Shrink Step
$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

E10. Merge-and-Shrink: Algorithm
First Shrink Step

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

M. Helmert, G. Röger (Universität Basel) Planning and Optimization

First Shrink Step
$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

$\mathcal{T}_{2}:=$ some abstraction of \mathcal{T}_{1}

current FTS: $\left\{\mathcal{T}_{2}, \mathcal{T}^{\left.\pi_{\{\text {truck } \mathrm{B}\}}\right\}}\right.$

Another Shrink Step?

- At this point, merge-and-shrink construction stops. The distances in the final factor define the heuristic function.
- If there were further state variables to integrate, we would shrink again, e.g., leading to the following abstraction (again with four states):

- We get a heuristic value of 3 for the initial state, better than any PDB heuristic that is a proper abstraction.
- The example generalizes to arbitrarily many trucks, even if we stick to the fixed size limit of 8 .

[^0]The Need for Succinct Abstractions

- One major difficulty for non-PDB abstraction heuristics is to succinctly represent the abstraction.
- For pattern databases, this is easy because the abstractions projections - are very structured.
- For less rigidly structured abstractions, we need another idea.

10. Merge-and-Shrink: Algorithm
 Generic Algorithm Template

Maintaining the Abstraction

Generic Merge \& Shrink Algorithm for planning task Π
$F:=F(\Pi)$
while $|F|>1$:
select type $\in\{$ merge, shrink $\}$
if type = merge:

$$
\begin{aligned}
& \text { select } \mathcal{T}_{1}, \mathcal{T}_{2} \in F \\
& F:=\left(F \backslash\left\{\mathcal{T}_{1}, \mathcal{T}_{2}\right\}\right) \cup\left\{\mathcal{T}_{1} \otimes \mathcal{T}_{2}\right\}
\end{aligned}
$$

if type $=$ shrink:
select $\mathcal{T} \in F$
choose an abstraction mapping β on \mathcal{T} $F:=(F \backslash\{\mathcal{T}\}) \cup\left\{\mathcal{T}^{\beta}\right\}$
return the remaining factor \mathcal{T}^{α} in F

- The algorithm computes an abstract transition system.
- For the heuristic evaluation, we need an abstraction.
- How to maintain and represent the corresponding abstraction?
M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 15, 2023

How to Represent the Abstraction? (1)

Idea: the computation of the abstraction follows the sequence of product computations

- For the atomic abstractions $\pi_{\{v\}}$, we generate a one-dimensional table that denotes which value in $\operatorname{dom}(v)$ corresponds to which abstract state in $\mathcal{T}^{\pi_{\{\nu\}}}$.
- During the merge (product) step $\mathcal{A}:=\mathcal{A}_{1} \otimes \mathcal{A}_{2}$, we generate a two-dimensional table that denotes which pair of states of \mathcal{A}_{1} and \mathcal{A}_{2} corresponds to which state of \mathcal{A}.
- During the shrink (abstraction) steps, we make sure to keep the table in sync with the abstraction choices.

Idea: the computation of the abstraction mapping follows the sequence of product computations

- Once we have computed the final abstract transition system, we compute all abstract goal distances and store them in a one-dimensional table.
- At this point, we can throw away all the abstract transition systems - we just need to keep the tables.
- During search, we do a sequence of table lookups to navigate from the atomic abstraction states to the final abstract state and heuristic value

$$
\rightsquigarrow 2|V| \text { lookups, } O(|V|) \text { time }
$$

Again, we illustrate the process with our running example.

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic abstractions is simple. Just number the states (domain values) consecutively and generate a table of references to the states:

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic abstractions is simple. Just number the states (domain values) consecutively and generate a table of references to the states:

For product transition systems $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$, we again number the product states consecutively and generate a table that links state pairs of \mathcal{A}_{1} and \mathcal{A}_{2} to states of \mathcal{A} :

Abstraction Example: Merge Step

Maintaining the Abstraction

For product transition systems $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$, we again number the product states consecutively and generate a table that links state pairs of \mathcal{A}_{1} and \mathcal{A}_{2} to states of \mathcal{A} :

Maintaining the Abstraction when Shrinking

Maintaining the Abstraction consistent when shrinking.

- In theory, this is easy to do:
- When combining states i and j, arbitrarily use one of them (say i) as the number of the new state.
- Find all table entries in the table for this abstraction which map to the other state j and change them to i.
- However, doing a table scan each time two states are combined is very inefficient.
- Fortunately, there also is an efficient implementation which takes constant time per combination.

E10. Merge-and-Shrink: Algorithm

Maintaining the Abstraction

Abstraction Example: Merge Step

For product transition systems $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$, we again number the product states consecutively and generate a table that links state pairs of \mathcal{A}_{1} and \mathcal{A}_{2} to states of \mathcal{A} :

	$s_{2}=0$	$s_{2}=1$
$s_{1}=0$	0	1
$s_{1}=1$	2	3
$s_{1}=2$	4	5
$s_{1}=3$	6	7

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Maintaining the Abstraction Efficiently

- Associate each abstract state with a linked list, representing all table entries that map to this state.
- Before starting the shrink operation, initialize the lists by scanning through the table, then discard the table.
- While shrinking, when combining i and j, splice the list elements of j into the list elements of i.
- For linked lists, this is a constant-time operation.
- Once shrinking is completed, renumber all abstract states so that there are no gaps in the numbering.
- Finally, regenerate the mapping table from the linked list information.

Abstraction Example: Shrink Step

Representation before shrinking:

$$
\begin{array}{c|cc}
& s_{2}=0 & s_{2}=1 \\
\hline s_{1}=0 & 0 & 1 \\
s_{1}=1 & 2 & 3 \\
s_{1}=2 & 4 & 5 \\
s_{1}=3 & 6 & 7
\end{array}
$$

M. Helmert, G. Röger (Universität Basel) Planning and Optimization

E10. Merge-and-Shrink: Algorithm
Maintaining the Abstraction
Abstraction Example: Shrink Step

1. Convert table to linked lists and discard it.

list $_{0}=\{(0,0)\}$
list $_{1}=\{(0,1)\}$ list $_{2}=\{(1,0)\}$ list $_{3}=\{(1,1)\}$ list $_{4}=\{(2,0)\}$ list $_{5}=\{(2,1)\}$ list $_{6}=\{(3,0)\}$
list $_{7}=\{(3,1)\}$

	$s_{2}=0$	$s_{2}=1$
$s_{1}=0$	0	1
$s_{1}=1$	2	3
$s_{1}=2$	4	5
$s_{1}=3$	6	7

M. Helmert, G. Röger (Universität Basel) Planning and Optimization November 15, $2023 \quad 42$ / 59
E10. Merge-and-Shrink: Algorithm Maintaining the Abstraction

Abstraction Example: Shrink Step
2. When combining i and j, splice list j_{j} into list ${ }_{i}$.

$$
\begin{aligned}
& \text { list }_{0}=\{(0,0)\} \\
& \text { list }_{1}=\{(0,1)\} \\
& \text { list }_{2}=\{(1,0),(1,1)\} \\
& \text { list }_{3}=\emptyset \\
& \text { list }_{4}=\{(2,0)\} \\
& \text { list }_{5}=\{(2,1)\} \\
& \text { list }_{6}=\{(3,0)\} \\
& \text { list }_{7}=\{(3,1)\}
\end{aligned}
$$

Abstraction Example: Shrink Step

2. When combining i and j, splice list $_{j}$ into list $_{i}$.

list $_{0}=\{(0,0)\}$
list $_{1}=\{(0,1)\}$
list $_{2}=\{(1,0),(1,1)\}$
list $_{3}=\emptyset$
list $_{4}=\{(2,0)\}$
list $_{5}=\{(2,1)\}$
list $_{6}=\{(3,0)\}$
list $_{7}=\{(3,1)\}$

Abstraction Example: Shrink Step

2. When combining i and j, splice list $_{j}$ into $^{\text {list }}{ }_{j}$.

list $_{0}=\{(0,0)\}$
list $_{1}=\{(0,1)\}$
list $_{2}=\{(1,0),(1,1)\}$
list $_{3}=\emptyset$
list $_{4}=\{(2,0),(2,1)\}$
list $_{5}=\emptyset$
list $_{6}=\{(3,0)\}$
list $_{7}=\{(3,1)\}$
M. Helmert, G. Röger (Universität Basel) Planning and Optimization

Abstraction Example: Shrink Step
2. When combining i and j, splice list j_{j} into list ${ }_{i}$.

$$
\begin{aligned}
& \text { list }_{0}=\{(0,0)\} \\
& \text { list }_{1}=\{(0,1)\} \\
& \text { list }_{2}=\{(1,0),(1,1)\} \\
& \text { list }_{3}=\emptyset \\
& \text { list }_{4}=\{(2,0),(2,1)\} \\
& \text { list }_{5}=\emptyset \\
& \text { list }_{6}=\{(3,0),(3,1)\} \\
& \text { list }_{7}=\emptyset
\end{aligned}
$$

Abstraction Example: Shrink Step

2. When combining i and j, splice list $_{j}$ into list $_{i}$.

list $_{0}=\{(0,0)\}$
list $_{1}=\{(0,1)\}$
list $_{2}=\{(1,0),(1,1)\}$
list $_{3}=\emptyset$
list $_{4}=\{(2,0),(2,1)\}$
list $_{5}=\emptyset$
list $_{6}=\{(3,0),(3,1)\}$
list $_{7}=\emptyset$

Abstraction Example: Shrink Step

2. When combining i and j, splice list j_{j} into list ${ }_{i}$.

Abstraction Example: Shrink Step

2. When combining i and j, splice list ${ }_{j}$ into list $_{i}$.

Abstraction Example: Shrink Step
3. Renumber abstract states consecutively.

3. Renumber abstract states consecutively.
list $_{0}=\{(0,0)\}$
list $_{1}=\{(0,1)\}$
list $_{2}=\{(1,0),(1,1)\}$
list $_{3}=\{(2,0),(2,1)$, $(3,0),(3,1)\}$
list $_{4}=\emptyset$
list $_{5}=\emptyset$
list $_{6}=\emptyset$
list $_{7}=\emptyset$
4. Regenerate the mapping table from the linked lists.

Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.

E10.4 Summary

- Merge-and-shrink abstractions are constructed by iteratively transforming the factored transition system of a planning task.
- Merge transformations combine two factors into their synchronized product.
- Shrink transformations reduce the size of a factor by abstracting it.
- Merge-and-shrink abstractions are represented by a set of reference tables, one for each atomic abstraction and one for each merge-and-shrink step.
- The heuristic representation uses an additional table for the goal distances in the final abstract transition system.

[^0]: E10. Merge-and-Shrink: Algorithm

