

Planning and Optimization

E10. Merge-and-Shrink: Algorithm

Malte Helmert and Gabriele Röger

Universität Basel

November 15, 2023

Planning and Optimization

November 15, 2023 — E10. Merge-and-Shrink: Algorithm

E10.1 Generic Algorithm

E10.2 Example

E10.3 Maintaining the Abstraction

E10.4 Summary

Content of this Course

E10.1 Generic Algorithm

Merge-and-Shrink

Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task Π

```

 $F := F(\Pi)$ 
while  $|F| > 1$ :
  select  $\text{type} \in \{\text{merge, shrink}\}$ 
  if  $\text{type} = \text{merge}$ :
    select  $\mathcal{T}_1, \mathcal{T}_2 \in F$ 
     $F := (F \setminus \{\mathcal{T}_1, \mathcal{T}_2\}) \cup \{\mathcal{T}_1 \otimes \mathcal{T}_2\}$ 
  if  $\text{type} = \text{shrink}$ :
    select  $\mathcal{T} \in F$ 
    choose an abstraction mapping  $\beta$  on  $\mathcal{T}$ 
     $F := (F \setminus \{\mathcal{T}\}) \cup \{\mathcal{T}^\beta\}$ 
return the remaining factor  $\mathcal{T}^\alpha$  in  $F$ 
  
```

In Ch. E12 and E13, we will include more transformation types
(label reduction and pruning)

Generic Merge-and-shrink Abstractions: Outline

Using the results of the previous chapter, we can develop a **generic abstraction computation procedure** that **takes all state variables into account**.

- ▶ **Initialization:** Compute the FTS consisting of all atomic projections.
- ▶ **Loop:** Repeatedly apply a transformation to the FTS.
 - ▶ **Merging:** Combine two factors by replacing them with their synchronized product.
 - ▶ **Shrinking:** If the factors are too large, make one of them smaller by abstracting it further (applying an arbitrary abstraction to it).
- ▶ **Termination:** Stop when only one factor is left.

The final factor is then used for an abstraction heuristic.

Merge-and-Shrink Strategies

Choices to resolve to instantiate the template:

- ▶ When to merge, when to shrink?
~~ **general strategy**
- ▶ Which abstractions to merge?
~~ **merge strategy**
- ▶ Which abstraction to shrink, and how to shrink it (which β)?
~~ **shrink strategy**

merge and shrink strategies ~~ Ch. E11/E12

General Strategy

A typical **general strategy**:

- ▶ define a **limit N** on the number of states allowed in each factor
- ▶ in each iteration, select two factors we would like to merge
- ▶ merge them if this does not exhaust the state number limit
- ▶ otherwise shrink one or both factors just enough to make a subsequent merge possible

E10.2 Example

Back to the Running Example

Logistics problem with one package, two trucks, two locations:

- ▶ state variable **package**: $\{L, R, A, B\}$
- ▶ state variable **truck A**: $\{L, R\}$
- ▶ state variable **truck B**: $\{L, R\}$

Initialization Step: Atomic Projection for Package

$\mathcal{T}^{\pi_{\{\text{package}\}}}$:

First Shrink Step

$\mathcal{T}_2 :=$ some abstraction of \mathcal{T}_1

First Shrink Step

$\mathcal{T}_2 :=$ some abstraction of \mathcal{T}_1

First Shrink Step

$\mathcal{T}_2 :=$ some abstraction of \mathcal{T}_1

First Shrink Step

$\mathcal{T}_2 :=$ some abstraction of \mathcal{T}_1

First Shrink Step

$\mathcal{T}_2 :=$ some abstraction of \mathcal{T}_1

First Shrink Step

$\mathcal{T}_2 :=$ some abstraction of \mathcal{T}_1

First Shrink Step

$\mathcal{T}_2 :=$ some abstraction of \mathcal{T}_1

First Shrink Step

$\mathcal{T}_2 :=$ some abstraction of \mathcal{T}_1

First Shrink Step

$\mathcal{T}_2 :=$ some abstraction of \mathcal{T}_1

current FTS: $\{\mathcal{T}_2, \mathcal{T}^{\pi\{\text{truck B}\}}\}$

Second Merge Step

$\mathcal{T}_3 := \mathcal{T}_2 \otimes \mathcal{T}^{\pi\{\text{truck B}\}}$:

current FTS: $\{\mathcal{T}_3\}$

Another Shrink Step?

- At this point, merge-and-shrink construction stops. The distances in the final factor define the heuristic function.
- If there were further state variables to integrate, we would shrink again, e.g., leading to the following abstraction (again with four states):

- We get a heuristic value of 3 for the initial state, **better than any PDB heuristic** that is a proper abstraction.
- The example generalizes to arbitrarily many trucks, even if we stick to the fixed size limit of 8.

E10.3 Maintaining the Abstraction

Merge-and-Shrink

The Need for Succinct Abstractions

- ▶ One major difficulty for non-PDB abstraction heuristics is to **succinctly represent the abstraction**.
- ▶ For pattern databases, this is easy because the abstractions – projections – are very **structured**.
- ▶ For less rigidly structured abstractions, we need another idea.

Generic Algorithm Template

Generic Merge & Shrink Algorithm for planning task Π

```

 $F := F(\Pi)$ 
while  $|F| > 1$ :
  select  $\text{type} \in \{\text{merge}, \text{shrink}\}$ 
  if  $\text{type} = \text{merge}$ :
    select  $\mathcal{T}_1, \mathcal{T}_2 \in F$ 
     $F := (F \setminus \{\mathcal{T}_1, \mathcal{T}_2\}) \cup \{\mathcal{T}_1 \otimes \mathcal{T}_2\}$ 
  if  $\text{type} = \text{shrink}$ :
    select  $\mathcal{T} \in F$ 
    choose an abstraction mapping  $\beta$  on  $\mathcal{T}$ 
     $F := (F \setminus \{\mathcal{T}\}) \cup \{\mathcal{T}^\beta\}$ 
  return the remaining factor  $\mathcal{T}^\alpha$  in  $F$ 
  
```

- ▶ The algorithm computes an abstract transition system.
- ▶ For the heuristic evaluation, we need an abstraction.
- ▶ How to maintain and represent the corresponding abstraction?

How to Represent the Abstraction? (1)

Idea: the computation of the abstraction follows the sequence of product computations

- ▶ For the **atomic abstractions** $\pi_{\{v\}}$, we generate a **one-dimensional table** that denotes which value in $\text{dom}(v)$ corresponds to which abstract state in $\mathcal{T}^{\pi_{\{v\}}}$.
- ▶ During the **merge** (product) step $\mathcal{A} := \mathcal{A}_1 \otimes \mathcal{A}_2$, we generate a **two-dimensional table** that denotes which pair of states of \mathcal{A}_1 and \mathcal{A}_2 corresponds to which state of \mathcal{A} .
- ▶ During the **shrink** (abstraction) steps, we make sure to keep the table in sync with the abstraction choices.

How to Represent the Abstraction? (2)

Idea: the computation of the abstraction mapping follows the sequence of product computations

- Once we have computed the final abstract transition system, we compute all **abstract goal distances** and store them in a **one-dimensional table**.
- At this point, we can **throw away** all the abstract transition systems – we just need to keep the tables.
- During **search**, we do a sequence of table lookups to navigate from the atomic abstraction states to the final abstract state and heuristic value
 $\rightsquigarrow 2|V|$ lookups, $O(|V|)$ time

Again, we illustrate the process with our running example.

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic abstractions is simple. Just number the states (domain values) consecutively and generate a table of references to the states:

Abstraction Example: Atomic Abstractions

Computing abstractions for the transition systems of atomic abstractions is simple. Just number the states (domain values) consecutively and generate a table of references to the states:

Abstraction Example: Merge Step

For product transition systems $\mathcal{A}_1 \otimes \mathcal{A}_2$, we again number the product states consecutively and generate a table that links state pairs of \mathcal{A}_1 and \mathcal{A}_2 to states of \mathcal{A} :

Abstraction Example: Merge Step

For product transition systems $\mathcal{A}_1 \otimes \mathcal{A}_2$, we again number the product states consecutively and generate a table that links state pairs of \mathcal{A}_1 and \mathcal{A}_2 to states of \mathcal{A} :

Abstraction Example: Merge Step

For product transition systems $\mathcal{A}_1 \otimes \mathcal{A}_2$, we again number the product states consecutively and generate a table that links state pairs of \mathcal{A}_1 and \mathcal{A}_2 to states of \mathcal{A} :

	$s_2 = 0$	$s_2 = 1$
$s_1 = 0$	0	1
$s_1 = 1$	2	3
$s_1 = 2$	4	5
$s_1 = 3$	6	7

Maintaining the Abstraction when Shrinking

- ▶ The hard part in representing the abstraction is to keep it consistent when shrinking.
- ▶ In theory, this is easy to do:
 - ▶ When combining states i and j , arbitrarily use one of them (say i) as the number of the new state.
 - ▶ Find all table entries in the table for this abstraction which map to the other state j and change them to i .
- ▶ However, doing a table scan each time two states are combined is very inefficient.
- ▶ Fortunately, there also is an efficient implementation which takes constant time per combination.

Maintaining the Abstraction Efficiently

- ▶ Associate each abstract state with a linked list, representing **all table entries that map to this state**.
- ▶ Before starting the shrink operation, initialize the lists by scanning through the table, then **discard the table**.
- ▶ While shrinking, when combining i and j , **splice the list elements of j into the list elements of i** .
 - ▶ For linked lists, this is a **constant-time operation**.
- ▶ Once shrinking is completed, renumber all abstract states so that there are no gaps in the numbering.
- ▶ Finally, regenerate the mapping table from the linked list information.

Abstraction Example: Shrink Step

2. When combining i and j , splice $list_j$ into $list_i$.

$list_0 = \{(0, 0)\}$
 $list_1 = \{(0, 1)\}$
 $list_2 = \{(1, 0), (1, 1)\}$
 $list_3 = \emptyset$
 $list_4 = \{(2, 0)\}$
 $list_5 = \{(2, 1)\}$
 $list_6 = \{(3, 0)\}$
 $list_7 = \{(3, 1)\}$

Abstraction Example: Shrink Step

2. When combining i and j , splice $list_j$ into $list_i$.

$list_0 = \{(0, 0)\}$
 $list_1 = \{(0, 1)\}$
 $list_2 = \{(1, 0), (1, 1)\}$
 $list_3 = \emptyset$
 $list_4 = \{(2, 0), (2, 1)\}$
 $list_5 = \emptyset$
 $list_6 = \{(3, 0)\}$
 $list_7 = \{(3, 1)\}$

Abstraction Example: Shrink Step

2. When combining i and j , splice $list_j$ into $list_i$.

$list_0 = \{(0, 0)\}$
 $list_1 = \{(0, 1)\}$
 $list_2 = \{(1, 0), (1, 1)\}$
 $list_3 = \emptyset$
 $list_4 = \{(2, 0), (2, 1)\}$
 $list_5 = \emptyset$
 $list_6 = \{(3, 0)\}$
 $list_7 = \{(3, 1)\}$

Abstraction Example: Shrink Step

2. When combining i and j , splice $list_j$ into $list_i$.

$list_0 = \{(0, 0)\}$
 $list_1 = \{(0, 1)\}$
 $list_2 = \{(1, 0), (1, 1)\}$
 $list_3 = \emptyset$
 $list_4 = \{(2, 0), (2, 1)\}$
 $list_5 = \emptyset$
 $list_6 = \{(3, 0)\}$
 $list_7 = \emptyset$

Abstraction Example: Shrink Step

3. Renumber abstract states consecutively.


```

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = {(2, 0), (2, 1),
           (3, 0), (3, 1)}
list4 = ∅
list5 = ∅
list6 = ∅
list7 = ∅

```

Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.


```

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = {(2, 0), (2, 1),
           (3, 0), (3, 1)}
list4 = ∅
list5 = ∅
list6 = ∅
list7 = ∅

```

	s ₂ = 0	s ₂ = 1
s ₁ = 0	0	1
s ₁ = 1	2	2
s ₁ = 2	3	3
s ₁ = 3	3	3

Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.


```

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = {(2, 0), (2, 1),
           (3, 0), (3, 1)}
list4 = ∅
list5 = ∅
list6 = ∅
list7 = ∅

```

Abstraction Example: Shrink Step

4. Regenerate the mapping table from the linked lists.


```

list0 = {(0, 0)}
list1 = {(0, 1)}
list2 = {(1, 0), (1, 1)}
list3 = {(2, 0), (2, 1),
           (3, 0), (3, 1)}
list4 = ∅
list5 = ∅
list6 = ∅
list7 = ∅

```

	s ₂ = 0	s ₂ = 1
s ₁ = 0	0	1
s ₁ = 1	2	2
s ₁ = 2	3	3
s ₁ = 3	3	3

The Final Heuristic Representation

At the end, our heuristic is represented by six tables:

- ▶ three one-dimensional tables for the atomic abstractions:

T _{package}	L	R	A	B	T _{truck A}	L	R	T _{truck B}	L	R
	0	1	2	3		0	1		0	1

- ▶ two tables for the two merge and subsequent shrink steps:

T _{m&s} ¹	s ₂ = 0	s ₂ = 1	T _{m&s} ²	s ₂ = 0	s ₂ = 1
s ₁ = 0	0	1	s ₁ = 0	1	1
s ₁ = 1	2	2	s ₁ = 1	1	0
s ₁ = 2	3	3	s ₁ = 2	2	2
s ₁ = 3	3	3	s ₁ = 3	3	3

- ▶ one table with goal distances for the final transition system:

T _h	s = 0	s = 1	s = 2	s = 3
h(s)	3	2	0	1

Given a state $s = \{\text{package} \mapsto L, \text{truck A} \mapsto L, \text{truck B} \mapsto R\}$, its heuristic value is then looked up as:

$$\triangleright h(s) = T_h[T_{m&s}^2[T_{m&s}^1[T_{\text{package}}[L], T_{\text{truck A}}[L]], T_{\text{truck B}}[R]]]$$

E10.4 Summary

Summary (1)

- ▶ Merge-and-shrink abstractions are constructed by iteratively **transforming** the factored transition system of a planning task.
- ▶ **Merge** transformations combine two factors into their synchronized product.
- ▶ **Shrink** transformations reduce the size of a factor by abstracting it.
- ▶ Merge-and-shrink abstractions are **represented by a set of reference tables**, one for each atomic abstraction and one for each merge-and-shrink step.
- ▶ The heuristic representation uses an additional table for the goal distances in the final abstract transition system.

Summary (2)

- ▶ Projections of SAS⁺ tasks correspond to merges of atomic factors.
- ▶ By also including shrinking, merge-and-shrink abstractions **generalize** projections: they can reflect **all** state variables, but in a potentially **lossy** way.