Planning and Optimization
E9. Merge-and-Shrink: Factored Transition Systems

Malte Helmert and Gabriele Röger
Universität Basel
November 15, 2023
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Planning and Optimization
November 15, 2023 - E9. Merge-and-Shrink: Factored Transition Systems

E9.1 Motivation
E9.2 Main Idea
E9.3 Atomic Projections
E9.4 Synchronized Product
E9.5 Factored Transition Systems
E9.6 Summary

Content of this Course

- Despite their popularity, pattern databases have some fundamental limitations (\rightsquigarrow example on next slides).
- Today and next time, we study a class of abstractions called merge-and-shrink abstractions.
- Merge-and-shrink abstractions can be seen as a proper generalization of pattern databases.
- They can do everything that pattern databases can do (modulo polynomial extra effort).
- They can do some things that pattern databases cannot.

Logistics problem with one package, two trucks, two locations:

- state variable package: $\{L, R, A, B\}$
- state variable truck $\mathrm{A}:\{L, R\}$
- state variable truck B: $\{L, R\}$
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

How accurate is the PDB heuristic?

- consider generalization of the example:
N trucks, 1 package
- consider any pattern that is a proper subset of variable set V
- $h\left(s_{0}\right) \leq 2 \rightsquigarrow$ no better than atomic projection to package

These values cannot be improved by maximizing over several patterns or using additive patterns.

Merge-and-shrink abstractions can represent heuristics with $h\left(s_{0}\right) \geq 3$ for tasks of this kind of any size.
Time and space requirements are linear in N.
(In fact, with time/space $O\left(N^{2}\right)$ we can construct a merge-and-shrink abstraction that gives the perfect heuristic h^{*} for such tasks, but we do not show this here.)

Merge-and-Shrink Abstractions: Main Idea

Main Idea of Merge-and-shrink Abstractions
(due to Dräger, Finkbeiner \& Podelski, 2006)
Instead of perfectly reflecting a few state variables,
reflect all state variables, but in a potentially lossy way.

- Represent planning task as factored transition system (FTS): a set of (small) abstract transition systems (factors)
that jointly represent the full transition system of the task.
- Iteratively transform FTS by:
- merging: combining two factors into one
- shrinking: reducing the size of a single factor by abstraction
- When only a single factor is left, its goal distances are the merge-and-shrink heuristic values.

E9.2 Main Idea

Mras
 Merge-and-Shrink Abstractions: Idea

Start from atomic factors (projections to single state variables)

E9. Merge-and-Shrink: Factored Transition Systems

E9. Mergeand-Shrink: Factored Transtion Systems
Merge-and-Shrink Abstractions: Idea

Shrink: replace a factor by an abstraction of it

Planning and Optimization
November 15, 2023

E9.3 Atomic Projections

- Atomic projections (projections to a single state variable) play an important role for merge-and-shrink abstractions.
- Unlike previous chapters, transition labels are critically important for merge-and-shrink.
- Hence we now look at the transition systems for atomic projections of our example task, including transition labels.
- We abbreviate labels (operator names) as in these examples:
- MALR: move truck A from left to right
- DAR: drop package from truck A at right location
- PBL: pick up package with truck B at left location
- We abbreviate parallel arcs with commas and wildcards (*) as in these examples:
- PAL, DAL: two parallel arcs labeled PAL and DAL
- MA**: two parallel arcs labeled MALR and MARL

E9. Merge-and-Shrink: Factored Transition Systems

$$
\mathcal{T}^{\pi}\{\text { package }\}:
$$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

E9.4 Synchronized Product

E9. Merge-and-Shrink: Factored Transition Systems	Synchronized Product
Synchronized Product: Idea	

E9. Merge-and-Shrink: Factored Transition Systems
 Synchronized Product of Transition Systems

Synchronized Product

Definition (Synchronized Product of Transition Systems)
For $i \in\{1,2\}$, let $\mathcal{T}_{i}=\left\langle S_{i}, L, c, T_{i}, s_{0 i}, S_{\star i}\right\rangle$ be transition systems with the same labels and cost function.

The synchronized product of \mathcal{T}_{1} and \mathcal{T}_{2}, in symbols $\mathcal{T}_{1} \otimes \mathcal{T}_{2}$,
is the transition system $\mathcal{T}_{\otimes}=\left\langle S_{\otimes}, L, c, T_{\otimes}, s_{0 \otimes}, S_{\star \otimes}\right\rangle$ with

- $S_{\otimes}=S_{1} \times S_{2}$
- $T_{\otimes}=\left\{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\ell}\left\langle t_{1}, t_{2}\right\rangle \mid s_{1} \xrightarrow{\ell} t_{1} \in T_{1}\right.$ and $\left.s_{2} \xrightarrow{\ell} t_{2} \in T_{2}\right\}$
- $s_{0 \otimes}=\left\langle s_{01}, s_{02}\right\rangle$
- $S_{\star \otimes}=S_{\star 1} \times S_{\star 2}$

Example: Synchronized Product
$\mathcal{T}^{\pi_{\text {\{package }\}}} \otimes \mathcal{T}^{\pi_{\{\text {truck A }\}}}:$

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

E9. Merge-and-Shrink: Factored Transition Systems Example: Synchronized Product

Synchronized Product

$$
\begin{aligned}
& \mathcal{T}^{\pi_{\{\text {package }\}}} \otimes \mathcal{T}^{\pi_{\text {truck A }\}}}: \\
& s_{0 \otimes}=\left\langle s_{01}, s_{02}\right\rangle
\end{aligned}
$$

Example: Synchronized Product

$$
\begin{aligned}
& \mathcal{T}^{\pi_{\{\text {package }\}}} \otimes \mathcal{T}^{\pi_{\{\text {truck A }\}}} \\
& S_{\otimes}=S_{1} \times S_{2}
\end{aligned}
$$

M. Helmert, G. Röger (Universität Basel) Planning and Optimization

Example: Synchronized Product

$$
\begin{aligned}
& \mathcal{T}^{\pi_{\{\text {package }\}}} \otimes \mathcal{T}^{\pi_{\{\text {truck A }\}}} \\
& S_{\star \otimes}=S_{\star 1} \times S_{\star 2}
\end{aligned}
$$

\otimes

[^0]Planning and Optimization

Example: Synchronized Product
$\mathcal{T}^{\pi_{\{\text {package }\}}} \otimes \mathcal{T}^{\pi_{\{\text {truck A\} }}}:$

$$
T_{\otimes}=\left\{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\ell}\left\langle t_{1}, t_{2}\right\rangle \mid s_{1} \xrightarrow{\ell} t_{1} \in T_{1} \text { and } s_{2} \xrightarrow{\ell} t_{2} \in T_{2}\right\}
$$

M. Helmert G. Röger (Universität Basel) Planning and Optimization

Example: Synchronized Product
$\mathcal{T}^{\pi_{\{\text {package }\}}} \otimes \mathcal{T}^{\pi_{\{\text {truck A }\}}}:$

$$
T_{\otimes}=\left\{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\ell}\left\langle t_{1}, t_{2}\right\rangle \mid s_{1} \xrightarrow{\ell} t_{1} \in T_{1} \text { and } s_{2} \xrightarrow{\ell} t_{2} \in T_{2}\right\}
$$

M. Helmert, G. Röger (Universität Basel) Planning and Optimization

E9. Merge-and-Shrink: Factored Transition Systems

Synchronized Product
Example: Synchronized Product

$$
\begin{aligned}
& \mathcal{T}^{\pi_{\{\text {package }\}}} \otimes \mathcal{T}^{\pi_{\{\text {truck A }\}}:} \\
& T_{\otimes}=\left\{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\ell}\left\langle t_{1}, t_{2}\right\rangle \mid s_{1} \xrightarrow{\ell} t_{1} \in T_{1} \text { and } s_{2} \xrightarrow{\ell} t_{2} \in T_{2}\right\}
\end{aligned}
$$

\otimes

\otimes

- Up to isomorphism ("names of states"),
products are associative and commutative:
- $\left(\mathcal{T} \otimes \mathcal{T}^{\prime}\right) \otimes \mathcal{T}^{\prime \prime} \sim \mathcal{T} \otimes\left(\mathcal{T}^{\prime} \otimes \mathcal{T}^{\prime \prime}\right)$
- $\mathcal{T} \otimes \mathcal{T}^{\prime} \sim \mathcal{T}^{\prime} \otimes \mathcal{T}$
- We do not care about names of states and thus treat products as associative and commutative.
- We can then define the product of a set $F=\left\{\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}\right\}$ of transition systems: $\otimes F:=\mathcal{T}_{1} \otimes \ldots \otimes \mathcal{T}_{n}$

E9.5 Factored Transition Systems

Factored Transition System

Definition (Factored Transition System)
A finite set $F=\left\{\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}\right\}$ of transition systems with the same labels and cost function is called a factored transition system (FTS).
F represents the transition system $\otimes F$.
A planning task gives rise to an FTS via its atomic projections:
Definition (Factored Transition System Induced by Planning Task) Let Π be a planning task with state variables V.
The factored transition system induced by Π
is the FTS $F(\Pi)=\left\{\mathcal{T}^{\pi}\{v\} \mid v \in V\right\}$

E9. Merge-and-Shrink: Factored Transition Systems
Factored Transition Systems
Back to the Example Product

Factored Transition Systems
$\mathcal{T}^{\pi_{\text {\{package }\}}} \otimes \mathcal{T}^{\pi_{\{\text {truck A }\}}}:$

We have $\mathcal{T}^{\pi_{\text {\{package }\}}} \otimes \mathcal{T}^{\pi_{\{\text {truck A }\}}} \sim \mathcal{T}^{\pi_{\{\text {package,truck A }\}}}$. Coincidence?

Recovering $\mathcal{T}(\Pi)$ from the Factored Transition System

- By repeated application of the theorem, we can recover all pattern database heuristics of a SAS^{+}planning task as products of atomic factors.
- Moreover, by computing the product of all atomic projections, we can recover the identity abstraction id $=\pi_{V}$.
This implies:
Corollary (Recovering $\mathcal{T}(\Pi)$ from the Factored Transition System) Let Π be a SAS^{+}planning task. Then $\otimes F(\Pi) \sim \mathcal{T}(\Pi)$.

This is an important result because it shows
that $F(\Pi)$ represents all important information about Π.

Theorem (Products of Projections)
Let Π be a SAS ${ }^{+}$planning task with variable set V, and let V_{1} and V_{2} be disjoint subsets of V.

Then $\mathcal{T}^{\pi v_{1}} \otimes \mathcal{T}^{\pi V_{2}} \sim \mathcal{T}^{\pi V_{1} \cup v_{2}}$.
(Proof omitted.)
\rightsquigarrow products allow us to build finer projections from coarser ones

E9.6 Summary

- A factored transition system is a set of transition systems that represents a larger transition system by focusing on its individual components (factors).
- For planning tasks, these factors are the atomic projections (projections to single state variables).
- The synchronized product $\mathcal{T} \otimes \mathcal{T}^{\prime}$ of two transition systems with the same labels captures their "joint behaviour".
- For SAS ${ }^{+}$tasks, all projections can be obtained as products of atomic projections.
- In particular, the product of all factors of a SAS^{+}task results in the full transition system of the task.

[^0]: M. Helmert, G. Röger (Universität Basel)

