Planning and Optimization
 E5. Abstractions: Additive Abstractions

Malte Helmert and Gabriele Röger

Universität Basel
November 8, 2023

Content of this Course

Additivity

Orthogonality of Abstractions

Definition (Orthogonal)

Let α_{1} and α_{2} be abstractions of transition system \mathcal{T}.
We say that α_{1} and α_{2} are orthogonal if for all transitions $s \xrightarrow{\ell} t$ of \mathcal{T}, we have $\alpha_{1}(s)=\alpha_{1}(t)$ or $\alpha_{2}(s)=\alpha_{2}(t)$.

Affecting Transition Labels

Definition (Affecting Transition Labels)

Let \mathcal{T} be a transition system, and let ℓ be one of its labels.
We say that ℓ affects \mathcal{T} if \mathcal{T} has a transition $s \xrightarrow{\ell} t$ with $s \neq t$.

Theorem (Affecting Labels vs. Orthogonality)

Let α_{1} and α_{2} be abstractions of transition system \mathcal{T}.
If no label of \mathcal{T} affects both $\mathcal{T}^{\alpha_{1}}$ and $\mathcal{T}^{\alpha_{2}}$, then α_{1} and α_{2} are orthogonal.
(Easy proof omitted.)

Orthogonal Abstractions: Example

9		12	
		14	13
			11
15	10	8	

Are the abstractions orthogonal?

Orthogonal Abstractions: Example

Are the abstractions orthogonal?

Orthogonality and Additivity

Theorem (Additivity for Orthogonal Abstractions)

Let $h^{\alpha_{1}}, \ldots, h^{\alpha_{n}}$ be abstraction heuristics of the same transition system such that α_{i} and α_{j} are orthogonal for all $i \neq j$.

Then $\sum_{i=1}^{n} h^{\alpha_{i}}$ is a safe, goal-aware, admissible and consistent heuristic for Π.

Orthogonality and Additivity: Example

transition system \mathcal{T}
state variables: first package, second package, truck

Orthogonality and Additivity: Example

> abstraction α_{1}
> abstraction: only consider value of first package

Orthogonality and Additivity: Example

> abstraction α_{1} abstraction: only consider value of first package

Orthogonality and Additivity: Example

abstraction α_{2} (orthogonal to α_{1}) abstraction: only consider value of second package

Orthogonality and Additivity: Example

abstraction α_{2} (orthogonal to α_{1}) abstraction: only consider value of second package

Orthogonality and Additivity: Proof (1)

Proof.

We prove goal-awareness and consistency; the other properties follow from these two.
Let $\mathcal{T}=\left\langle S, L, c, T, s_{0}, S_{\star}\right\rangle$ be the concrete transition system.
Let $h=\sum_{i=1}^{n} h^{\alpha_{i}}$.

Orthogonality and Additivity: Proof (1)

Proof.

We prove goal-awareness and consistency; the other properties follow from these two.
Let $\mathcal{T}=\left\langle S, L, c, T, s_{0}, S_{\star}\right\rangle$ be the concrete transition system.
Let $h=\sum_{i=1}^{n} h^{\alpha_{i}}$.
Goal-awareness: For goal states $s \in S_{\star}$,
$h(s)=\sum_{i=1}^{n} h^{\alpha_{i}}(s)=\sum_{i=1}^{n} 0=0$ because all individual abstraction heuristics are goal-aware.

Orthogonality and Additivity: Proof (2)

Proof (continued).
Consistency: Let $s \xrightarrow{o} t \in T$. We must prove $h(s) \leq c(o)+h(t)$.

Orthogonality and Additivity: Proof (2)

Proof (continued).

Consistency: Let $s \xrightarrow{o} t \in T$. We must prove $h(s) \leq c(o)+h(t)$.
Because the abstractions are orthogonal, $\alpha_{i}(s) \neq \alpha_{i}(t)$ for at most one $i \in\{1, \ldots, n\}$.

Orthogonality and Additivity: Proof (2)

Proof (continued).

Consistency: Let $s \xrightarrow{o} t \in T$. We must prove $h(s) \leq c(o)+h(t)$.
Because the abstractions are orthogonal, $\alpha_{i}(s) \neq \alpha_{i}(t)$ for at most one $i \in\{1, \ldots, n\}$.
Case 1: $\alpha_{i}(s)=\alpha_{i}(t)$ for all $i \in\{1, \ldots, n\}$.

Orthogonality and Additivity: Proof (2)

Proof (continued).

Consistency: Let $s \xrightarrow{o} t \in T$. We must prove $h(s) \leq c(o)+h(t)$.
Because the abstractions are orthogonal, $\alpha_{i}(s) \neq \alpha_{i}(t)$ for at most one $i \in\{1, \ldots, n\}$.
Case 1: $\alpha_{i}(s)=\alpha_{i}(t)$ for all $i \in\{1, \ldots, n\}$.
Then $h(s)=\sum_{i=1}^{n} h^{\alpha_{i}}(s)$

$$
\begin{aligned}
& =\sum_{i=1}^{n} h_{\mathcal{T}^{\alpha_{i}}}^{*}\left(\alpha_{i}(s)\right) \\
& =\sum_{i=1}^{n} h_{\mathcal{T}^{\alpha_{i}}}\left(\alpha_{i}(t)\right) \\
& =\sum_{i=1}^{n} h^{\alpha_{i}}(t) \\
& =h(t) \leq c(o)+h(t) .
\end{aligned}
$$

Orthogonality and Additivity: Proof (3)

Proof (continued).

Case 2: $\alpha_{i}(s) \neq \alpha_{i}(t)$ for exactly one $i \in\{1, \ldots, n\}$.
Let $k \in\{1, \ldots, n\}$ such that $\alpha_{k}(s) \neq \alpha_{k}(t)$.

Orthogonality and Additivity: Proof (3)

Proof (continued).

Case 2: $\alpha_{i}(s) \neq \alpha_{i}(t)$ for exactly one $i \in\{1, \ldots, n\}$.
Let $k \in\{1, \ldots, n\}$ such that $\alpha_{k}(s) \neq \alpha_{k}(t)$.
Then $h(s)=\sum_{i=1}^{n} h^{\alpha_{i}}(s)$

$$
\begin{aligned}
& =\sum_{i \in\{1, \ldots, n\} \backslash\{k\}} h_{\mathcal{T}^{\alpha_{i}}}\left(\alpha_{i}(s)\right)+h^{\alpha_{k}}(s) \\
& \leq \sum_{i \in\{1, \ldots, n\} \backslash\{k\}}^{\mathcal{T}_{i}}\left(\alpha_{i}(t)\right)+c(o)+h^{\alpha_{k}}(t) \\
& =c(o)+\sum_{i=1}^{n} h^{\alpha_{i}}(t) \\
& =c(o)+h(t),
\end{aligned}
$$

where the inequality holds because $\alpha_{i}(s)=\alpha_{i}(t)$ for all $i \neq k$ and $h^{\alpha_{k}}$ is consistent.

Outlook

Using Abstraction Heuristics in Practice

In practice, there are conflicting goals for abstractions:
■ we want to obtain an informative heuristic, but

- want to keep its representation small.

Abstractions have small representations if
■ there are few abstract states and

- there is a succinct encoding for α.

Counterexample: One-State Abstraction

One-state abstraction: $\alpha(s):=$ const.

+ very few abstract states and succinct encoding for α
- completely uninformative heuristic

Counterexample: Identity Abstraction

Identity abstraction: $\alpha(s):=s$.

+ perfect heuristic and succinct encoding for α
- too many abstract states

Counterexample: Perfect Abstraction

Perfect abstraction: $\alpha(s):=h^{*}(s)$.

+ perfect heuristic and usually few abstract states
- usually no succinct encoding for α

Automatically Deriving Good Abstraction Heuristics

> Abstraction Heuristics for Planning: Main Research Problem Automatically derive effective abstraction heuristics for planning tasks.

\rightsquigarrow we will study two state-of-the-art approaches in the following chapters

Summary

Summary

- Abstraction heuristics from orthogonal abstractions can be added without losing admissibility or consistency.
- One sufficient condition for orthogonality is that all abstractions are affected by disjoint sets of labels.
- Practically useful abstractions are those which give informative heuristics, yet have a small representation.
- Coming up with good abstractions automatically is the main research challenge when applying abstraction heuristics in planning.

