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Reminder: Transition Systems
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Transition Systems

Reminder from Chapter B1:

Definition (Transition System)

A transition system is a 6-tuple T = ⟨S , L, c ,T , s0, S⋆⟩ where
S is a finite set of states,

L is a finite set of (transition) labels,

c : L → R+
0 is a label cost function,

T ⊆ S × L× S is the transition relation,

s0 ∈ S is the initial state, and

S⋆ ⊆ S is the set of goal states.

We say that T has the transition ⟨s, ℓ, s ′⟩ if ⟨s, ℓ, s ′⟩ ∈ T .

We also write this as s
ℓ−→ s ′, or s → s ′ when not interested in ℓ.

Note: Transition systems are also called state spaces.
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Transition Systems: Example

Note: To reduce clutter, our figures often omit arc labels and costs
and collapse transitions between identical states. However, these
are important for the formal definition of the transition system.
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Mapping Planning Tasks to Transition Systems

Reminder from Chapters B3 and E1:

Definition (Transition System Induced by a Planning Task)

The planning task Π = ⟨V , I ,O, γ⟩ induces
the transition system T (Π) = ⟨S , L, c ,T , s0,S⋆⟩, where

S is the set of all states over state variables V ,

L is the set of operators O,

c(o) = cost(o) for all operators o ∈ O,

T = {⟨s, o, s ′⟩ | s ∈ S , o applicable in s, s ′ = sJoK},
s0 = I , and

S⋆ = {s ∈ S | s |= γ}.

(same definition for propositional and finite-domain representation)
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Tasks in Finite-Domain Representation

Notes:

We will focus on planning tasks in finite-domain
representation (FDR) while studying abstractions.

All concepts apply equally to propositional planning tasks.

However, FDR tasks are almost always used by algorithms
in this context because they tend to have fewer useless
(physically impossible) states.

Useless states can hurt the efficiency of abstraction-based
algorithms.
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Example Task: One Package, Two Trucks

Example (One Package, Two Trucks)

Consider the following FDR planning task ⟨V , I ,O, γ⟩:
V = {p, tA, tB} with

dom(p) = {L,R,A,B}
dom(tA) = dom(tB) = {L,R}

I = {p 7→ L, tA 7→ R, tB 7→ R}
O = {pickupi ,j | i ∈ {A,B}, j ∈ {L,R}}

∪ {dropi ,j | i ∈ {A,B}, j ∈ {L,R}}
∪ {movei ,j ,j ′ | i ∈ {A,B}, j , j ′ ∈ {L,R}, j ̸= j ′}, where
pickupi,j = ⟨ti = j ∧ p = j , p := i , 1⟩
dropi,j = ⟨ti = j ∧ p = i , p := j , 1⟩
movei,j,j′ = ⟨ti = j , ti := j ′, 1⟩

γ = (p = R)
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Transition System of Example Task
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State {p 7→ i , tA 7→ j , tB 7→ k} is depicted as ijk.

Transition labels are again not shown. For example, the
transition from LLL to ALL has the label pickupA,L.
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Abstractions
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Abstractions

Definition (Abstraction)

Let T = ⟨S , L, c ,T , s0,S⋆⟩ be a transition system.

An abstraction (also: abstraction function, abstraction mapping)
of T is a function α : S → Sα defined on the states of T ,
where Sα is an arbitrary set.

Without loss of generality, we require that α is surjective.

Intuition: α maps the states of T to another (usually smaller)
abstract state space.
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Abstract Transition System

Definition (Abstract Transition System)

Let T = ⟨S , L, c ,T , s0,S⋆⟩ be a transition system,
and let α : S → Sα be an abstraction of T .

The abstract transition system induced by α, in symbols T α,
is the transition system T α = ⟨Sα, L, c ,Tα, sα0 ,S

α
⋆ ⟩ defined by:

Tα = {⟨α(s), ℓ, α(t)⟩ | ⟨s, ℓ, t⟩ ∈ T}
sα0 = α(s0)

Sα
⋆ = {α(s) | s ∈ S⋆}
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Concrete and Abstract State Space

Let T be a transition system and α be an abstraction of T .

T is called the concrete transition system.

T α is called the abstract transition system.

Similarly: concrete/abstract state space,
concrete/abstract transition, etc.
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Abstraction: Example

concrete transition system
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Abstraction: Example

abstract transition system
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Note: Most arcs represent many parallel transitions.
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Strict Homomorphisms

The abstraction mapping α that transforms T to T α

is also called a strict homomorphism from T to T α.

Roughly speaking, in mathematics a homomorphism
is a property-preserving mapping between structures.

A strict homomorphism is one where no additional features
are introduced. A non-strict homomorphism in planning
would mean that the abstract transition system may include
additional transitions and goal states not induced by α.
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Abstraction Heuristics
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Abstraction Heuristics

Definition (Abstraction Heuristic)

Let α : S → Sα be an abstraction of a transition system T .

The abstraction heuristic induced by α, written hα,
is the heuristic function hα : S → R+

0 ∪ {∞} defined as

hα(s) = h∗T α(α(s)) for all s ∈ S ,

where h∗T α denotes the goal distance function in T α.

Notes:

hα(s) = ∞ if no goal state of T α is reachable from α(s)

We also apply abstraction terminology to planning tasks Π,
which stand for their induced transition systems.
For example, an abstraction of Π is an abstraction of T (Π).
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Abstraction Heuristics: Example
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hα({p 7→ L, tA 7→ R, tB 7→ R}) = 3
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Consistency of Abstraction Heuristics (1)

Theorem (Consistency and Admissibility of hα)

Let α be an abstraction of a transition system T .
Then hα is safe, goal-aware, admissible and consistent.

Proof.

We prove goal-awareness and consistency;
the other properties follow from these two.

Let T = ⟨S , L, c ,T , s0,S⋆⟩.
Let T α = ⟨Sα, L, c ,Tα, sα0 , S

α
⋆ ⟩.

Goal-awareness: We need to show that hα(s) = 0 for all s ∈ S⋆,
so let s ∈ S⋆. Then α(s) ∈ Sα

⋆ by the definition of abstract
transition systems, and hence hα(s) = h∗T α(α(s)) = 0. . . .
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Consistency of Abstraction Heuristics (1)

Theorem (Consistency and Admissibility of hα)

Let α be an abstraction of a transition system T .
Then hα is safe, goal-aware, admissible and consistent.

Proof.

We prove goal-awareness and consistency;
the other properties follow from these two.

Let T = ⟨S , L, c ,T , s0,S⋆⟩.
Let T α = ⟨Sα, L, c ,Tα, sα0 , S

α
⋆ ⟩.

Goal-awareness: We need to show that hα(s) = 0 for all s ∈ S⋆,
so let s ∈ S⋆. Then α(s) ∈ Sα

⋆ by the definition of abstract
transition systems, and hence hα(s) = h∗T α(α(s)) = 0. . . .
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Consistency of Abstraction Heuristics (2)

Proof (continued).

Consistency: Consider any state transition s
ℓ−→ t of T .

We need to show hα(s) ≤ c(ℓ) + hα(t).

By the definition of T α, we get α(s)
ℓ−→ α(t) ∈ Tα.

Hence, α(t) is a successor of α(s) in T α via the label ℓ.

We get:

hα(s) = h∗T α(α(s))
≤ c(ℓ) + h∗T α(α(t))
= c(ℓ) + hα(t),

where the inequality holds because perfect goal distances h∗T α

are consistent in T α.
(The shortest path from α(s) to the goal in T α cannot be longer
than the shortest path from α(s) to the goal via α(t).)
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Consistency of Abstraction Heuristics (2)

Proof (continued).

Consistency: Consider any state transition s
ℓ−→ t of T .

We need to show hα(s) ≤ c(ℓ) + hα(t).

By the definition of T α, we get α(s)
ℓ−→ α(t) ∈ Tα.

Hence, α(t) is a successor of α(s) in T α via the label ℓ.

We get:

hα(s) = h∗T α(α(s))
≤ c(ℓ) + h∗T α(α(t))
= c(ℓ) + hα(t),

where the inequality holds because perfect goal distances h∗T α

are consistent in T α.
(The shortest path from α(s) to the goal in T α cannot be longer
than the shortest path from α(s) to the goal via α(t).)
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Consistency of Abstraction Heuristics (2)

Proof (continued).

Consistency: Consider any state transition s
ℓ−→ t of T .

We need to show hα(s) ≤ c(ℓ) + hα(t).

By the definition of T α, we get α(s)
ℓ−→ α(t) ∈ Tα.

Hence, α(t) is a successor of α(s) in T α via the label ℓ.

We get:

hα(s) = h∗T α(α(s))
≤ c(ℓ) + h∗T α(α(t))
= c(ℓ) + hα(t),

where the inequality holds because perfect goal distances h∗T α

are consistent in T α.
(The shortest path from α(s) to the goal in T α cannot be longer
than the shortest path from α(s) to the goal via α(t).)
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Coarsenings and Refinements
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Abstractions of Abstractions

Since abstractions map transition systems to transition systems,
they are composable:

Using a first abstraction α : S → S ′, map T to T α.

Using a second abstraction β : S ′ → S ′′, map T α to (T α)β.

The result is the same as directly using the abstraction (β ◦ α):
Let γ : S → S ′′ be defined as γ(s) = (β ◦ α)(s) = β(α(s)).

Then T γ = (T α)β.
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Abstractions of Abstractions: Example (1)
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transition system T
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Abstractions of Abstractions: Example (2)
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Transition system T ′ as an abstraction of T
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Abstractions of Abstractions: Example (2)
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Abstractions of Abstractions: Example (3)
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Transition system T ′′ as an abstraction of T ′
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Abstractions of Abstractions: Example (3)
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Transition system T ′′ as an abstraction of T
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Coarsenings and Refinements

Definition (Coarsening and Refinement)

Let α and γ be abstractions of the same transition system
such that γ = β ◦ α for some function β.

Then γ is called a coarsening of α
and α is called a refinement of γ.
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Heuristic Quality of Refinements

Theorem (Heuristic Quality of Refinements)

Let α and γ be abstractions of the same transition system
such that α is a refinement of γ.

Then hα dominates hγ .

In other words, hγ(s) ≤ hα(s) ≤ h∗(s) for all states s.
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Heuristic Quality of Refinements: Proof

Proof.

Since α is a refinement of γ,
there exists a function β with γ = β ◦ α.
For all states s of Π, we get:

hγ(s) = h∗T γ (γ(s))

= h∗T γ (β(α(s)))

= hβT α(α(s))

≤ h∗T α(α(s))

= hα(s),

where the inequality holds because hβT α is an admissible heuristic
in the transition system T α.
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Summary
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Summary

An abstraction is a function α that maps the states S
of a transition system to another (usually smaller) set Sα.

This induces an abstract transition system T α, which behaves
like the original transition system T except that states
mapped to the same abstract state cannot be distinguished.

Abstractions α induce abstraction heuristics hα: hα(s)
is the goal distance of α(s) in the abstract transition system.

Abstraction heuristics are safe, goal-aware, admissible
and consistent.

Abstractions can be composed, leading to coarser vs. finer
abstractions. Heuristics for finer abstractions dominate those
for coarser ones.
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