
Planning and Optimization
E1. Planning Tasks in Finite-Domain Representation

Malte Helmert and Gabriele Röger

Universität Basel

November 1, 2023

Finite-Domain Representation Equivalence and Normal Forms Summary

How We Continue

The next class of heuristics we will consider
are abstraction heuristics.

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Critical Paths

Constraints

However, this requires some preparations.

Finite-Domain Representation Equivalence and Normal Forms Summary

Back to Foundations: Finite-Domain Representation

Abstraction heuristics benefit from a more compact task
representation, called finite-domain representation.

To understand the relationship to the propositional task
representation, we need to know a special kind of invariants,
namely mutexes.

⇝ We first get to know finite-domain representation (this
chapter) and then speak about invariants and transformations
between the representations (next chapter).

⇝ not specific to abstraction heuristics, but general foundations

Finite-Domain Representation Equivalence and Normal Forms Summary

Content of this Course

Planning

Prelude

Foundations

Approaches

Delete Relaxation

Abstraction

Critical Paths

Constraints

Finite-Domain Representation Equivalence and Normal Forms Summary

Finite-Domain Representation

Finite-Domain Representation Equivalence and Normal Forms Summary

Finite-Domain State Variables

So far, we used propositional (Boolean) state variables.
⇝ possible values T and F

We now consider finite-domain variables.
⇝ every variable has a finite set of possible values

A state is still an assignment to the state variables.

Example: O(n2) Boolean variables or O(n) finite-domain variables
with domain size O(n) suffice for blocks world with n blocks.

Finite-Domain Representation Equivalence and Normal Forms Summary

Blocks World State with Propositional Variables

Example

s(A-on-B) = F

s(A-on-C) = F

s(A-on-table) = T

s(B-on-A) = T

s(B-on-C) = F

s(B-on-table) = F

s(C-on-A) = F

s(C-on-B) = F

s(C-on-table) = T

⇝ 29 = 512 states

A
B

C

Note: it may be useful to add auxiliary state variables like A-clear.

Finite-Domain Representation Equivalence and Normal Forms Summary

Blocks World State with Finite-Domain Variables

Example

Use three finite-domain state variables:

below-a: {b, c, table}
below-b: {a, c, table}
below-c: {a, b, table}

s(below-a) = table

s(below-b) = a

s(below-c) = table

⇝ 33 = 27 states

A
B

C

Note: it may be useful to add auxiliary state variables like above-a.

Finite-Domain Representation Equivalence and Normal Forms Summary

Advantage of Finite-Domain Representation

How many “useless” (physically impossible) states are there
with these blocks world state representations?

There are 13 physically possible states with three blocks:

all blocks on table: 1 state
all blocks in one stack: 3! = 6 states
two block stacked, the other separate:

(
3
2

)
2! = 6

With propositional variables, 29 − 13 = 499 states are useless.

With finite-domain variables, only 27− 13 = 14 are useless.

Although useless states are unreachable,
they can introduce “shortcuts” in some heuristics
and thus lead to worse heuristic estimates.

Finite-Domain Representation Equivalence and Normal Forms Summary

Finite-Domain State Variables

Definition (Finite-Domain State Variable)

A finite-domain state variable is a symbol v with an associated
domain dom(v), which is a finite non-empty set of values.

Let V be a finite set of finite-domain state variables.

A state s over V is an assignment s : V →
⋃

v∈V dom(v)
such that s(v) ∈ dom(v) for all v ∈ V .

A formula over V is a propositional logic formula whose atomic
propositions are of the form v = d where v ∈ V and d ∈ dom(v).

Slightly extending propositional logic, we treat states s
over finite-domain variables as logical interpretations
where s |= v = d iff s(v) = d .

Finite-Domain Representation Equivalence and Normal Forms Summary

Example: Finite-Domain State Variables

Example

Consider finite-domain variables V = {location, bike} with
dom(location) = {at-home, in-front-of-uni, in-lecture} and
dom(bike) = {locked, unlocked, stolen}.

Consider state s = {location 7→ at-home, bike 7→ locked}.

Does s |= (location = at-home ∧ ¬bike = stolen) hold?

Finite-Domain Representation Equivalence and Normal Forms Summary

Reminder: Syntax of Operators

Definition (Operator)

An operator o over state variables V is an object
with three properties:

a precondition pre(o), a formula over V

an effect eff(o) over V

a cost cost(o) ∈ R+
0

Only necessary adaptation: What is an effect?

Example

⟨location = in-front-of-uni,
location := in-lecture ∧ (bike = unlocked ▷ bike := stolen), 1⟩

Finite-Domain Representation Equivalence and Normal Forms Summary

Syntax of Effects

Definition (Effect over Finite-Domain State Variables)

Effects over finite-domain state variables V
are inductively defined as follows:

⊤ is an effect (empty effect).

If v ∈ V is a finite-domain state variable and d ∈ dom(v),
then v := d is an effect (atomic effect).

If e and e ′ are effects, then (e ∧ e ′) is an effect
(conjunctive effect).

If χ is a formula over V and e is an effect,
then (χ ▷ e) is an effect (conditional effect).

Parentheses can be omitted when this does not cause ambiguity.

only change compared to propositional case: atomic effects

Finite-Domain Representation Equivalence and Normal Forms Summary

Semantics of Effects: Effect Conditions

Definition (Effect Condition with Finite-Domain Representation)

Let v := d be an atomic effect, and let e be an effect.

The effect condition effcond(v := d , e) under which v := d triggers
given the effect e is a propositional formula defined as follows:

effcond(v := d ,⊤) = ⊥
effcond(v := d , v := d) = ⊤
effcond(v := d , v ′ := d ′) = ⊥
for atomic effects with v ′ ̸= v or d ′ ̸= d

effcond(v := d , (e ∧ e ′)) =
(effcond(v := d , e) ∨ effcond(v := d , e ′))

effcond(v := d , (χ ▷ e)) = (χ ∧ effcond(v := d , e))

Same definition as for propositional tasks,
we just use the adapted definition of atomic effects.

Finite-Domain Representation Equivalence and Normal Forms Summary

Conflicting Effects and Consistency Condition

What should an effect of the form v := a ∧ v := b mean?

For finite-domain representations, the accepted semantics
is to make this illegal, i.e., to make an operator inapplicable
if it would lead to conflicting effects.

Definition (Consistency Condition)

Let e be an effect over finite-domain state variables V .

The consistency condition for e, consist(e) is defined as∧
v∈V

∧
d ,d ′∈dom(v),d ̸=d ′

¬(effcond(v := d , e) ∧ effcond(v := d ′, e)).

How did we handle conflicting effects
in propositional planning tasks?

Finite-Domain Representation Equivalence and Normal Forms Summary

Semantics of Operators: Finite-Domain Case

Definition (Applicable, Resulting State)

Let V be a set of finite-domain state variables
and e be an effect over V .
If s |= consist(e), the resulting state of applying e in s,
written sJeK, is the state s ′ defined as follows for all v ∈ V :

s ′(v) =

{
d if s |= effcond(v := d , e) for some d ∈ dom(v)

s(v) otherwise

Let o be an operator over V .
Operator o is applicable in s if s |= pre(o) ∧ consist(eff(o)).

If o is applicable in s, the resulting state of applying o in s,
written sJoK, is the state sJeff(o)K.

Finite-Domain Representation Equivalence and Normal Forms Summary

Applying Operators: Example

Example

V = {location, bike} with
dom(location) = {at-home, in-front-of-uni, in-lecture} and
dom(bike) = {locked, unlocked, stolen}.

State s = {location 7→ in-front-of-uni, bike 7→ unlocked}

o = ⟨location = in-front-of-uni, location := at-home, 1⟩
o ′ = ⟨location = in-front-of-uni,

location := in-lecture ∧ (bike = unlocked ▷ bike := stolen), 1⟩

What is sJoK? What is sJo ′K?

Finite-Domain Representation Equivalence and Normal Forms Summary

FDR Planning Tasks

Definition (Planning Task)

An FDR planning task (or planning task in finite-domain
representation) is a 4-tuple Π = ⟨V , I ,O, γ⟩ where

V is a finite set of finite-domain state variables,

I is an assignment for V called the initial state,

O is a finite set of operators over V , and

γ is a formula over V called the goal.

Apart from the variables, this is the same definition
as for propositional planning tasks,
but the underlying concepts have been adapted.

Finite-Domain Representation Equivalence and Normal Forms Summary

Mapping FDR Planning Tasks to Transition Systems

Definition (Transition System Induced by an FDR Planning Task)

The FDR planning task Π = ⟨V , I ,O, γ⟩ induces
the transition system T (Π) = ⟨S , L, c ,T , s0,S⋆⟩, where

S is the set of all states over V ,

L is the set of operators O,

c(o) = cost(o) for all operators o ∈ O,

T = {⟨s, o, s ′⟩ | s ∈ S , o applicable in s, s ′ = sJoK},
s0 = I , and

S⋆ = {s ∈ S | s |= γ}.

Exactly the same definition as for propositional planning tasks,
but the underlying concepts have been adapted.

Finite-Domain Representation Equivalence and Normal Forms Summary

Equivalence and Normal Forms

Finite-Domain Representation Equivalence and Normal Forms Summary

Equivalence and Flat Operators

The definitions of equivalent effects/operators
and flat effects/operators apply equally to finite-domain
representation.

The same is true for the equivalence transformations.

You find the definitions and transformations in Chapter B4.

Finite-Domain Representation Equivalence and Normal Forms Summary

Conflict-Free Operators

Definition (Conflict-Free)

An effect e over finite-domain state variables V
is called conflict-free if effcond(v := d , e) ∧ effcond(v := d ′, e)
is unsatisfiable for all v ∈ V and d , d ′ ∈ dom(v) with d ̸= d ′.

An operator o is called conflict-free if eff(o) is conflict-free.

Note: consist(e) ≡ ⊤ for conflict-free e.

Algorithm to make given operator o conflict-free:

replace pre(o) with pre(o) ∧ consist(eff(o))

replace all atomic effects v := d by (consist(eff(o)) ▷ v := d)

The resulting operator o ′ is conflict-free and o ≡ o ′.

Finite-Domain Representation Equivalence and Normal Forms Summary

SAS+ Operators and Planning Tasks

Definition (SAS+ Operator)

An operator o of an FDR planning task is a SAS+ operator if

pre(o) is a satisfiable conjunction of atoms, and

eff(o) is a conflict-free conjunction of atomic effects.

Definition (SAS+ Planning Task)

An FDR planning task ⟨V ,O, I , γ⟩ is a SAS+ planning task
if all operators o ∈ O are SAS+ operators
and γ is a satisfiable conjunction of atoms.

Note: SAS+ operators are conflict-free and flat.

Finite-Domain Representation Equivalence and Normal Forms Summary

SAS+ Operators: Remarks

Every SAS+ operator is of the form

⟨v1 = d1 ∧ · · · ∧ vn = dn, v ′1 := d ′
1 ∧ · · · ∧ v ′m := d ′

m⟩

where all vi are distinct and all v ′j are distinct.

Often, SAS+ operators o are described
via two sets of partial assignments:

the preconditions {v1 7→ d1, . . . , vn 7→ dn}
the effects {v ′

1 7→ d ′
1, . . . , v

′
m 7→ d ′

m}

Finite-Domain Representation Equivalence and Normal Forms Summary

SAS+ vs. STRIPS

SAS+ is an analogue of STRIPS planning tasks for FDR,
but there is no special role of “positive” conditions.

Apart from this difference, all comments for STRIPS
apply analogously.

If all variable domains are binary, SAS+ is essentially
STRIPS with negation.

SAS+

Derives from SAS = Simplified Action Structures
(Bäckström & Klein, 1991)

Finite-Domain Representation Equivalence and Normal Forms Summary

Summary

Finite-Domain Representation Equivalence and Normal Forms Summary

Summary

Planning tasks in finite-domain representation (FDR)
are an alternative to propositional planning tasks.

FDR tasks are often more compact (have fewer states).

This makes many planning algorithms more efficient
when working with a finite-domain representation.

SAS+ tasks are a restricted form of FDR tasks
where only conjunctions of atoms are allowed
in the preconditions, effects and goal.
No conditional effects are allowed.

	Finite-Domain Representation
	

	Equivalence and Normal Forms
	

	Summary
	

