Planning and Optimization

E1l. Planning Tasks in Finite-Domain Representation

Malte Helmert and Gabriele Roger

Universitat Basel

November 1, 2023

How We Continue

m The next class of heuristics we will consider
are abstraction heuristics.

Prelude
Foundations
Approaches

Delete Relaxation

Critical Paths

Constraints

m However, this requires some preparations.

entation ence and Normal Forms

Back to Foundations: Finite-Domain Representation

m Abstraction heuristics benefit from a more compact task
representation, called finite-domain representation.

m To understand the relationship to the propositional task
representation, we need to know a special kind of invariants,
namely mutexes.

~~ We first get to know finite-domain representation (this
chapter) and then speak about invariants and transformations
between the representations (next chapter).

~> not specific to abstraction heuristics, but general foundations

Content of this Course

— Prelude

— Approaches

_ Delete Relaxation

— Abstraction

— Critical Paths

— Constraints

Finite-Domain Representation

rest
®00000000000000

Finite-Domain Representation

Finite-Domain Representation ence and Normal Forms

0O@0000000000000

Finite-Domain State Variables

m So far, we used propositional (Boolean) state variables.
~> possible values T and F

m We now consider finite-domain variables.
~> every variable has a finite set of possible values

m A state is still an assignment to the state variables.

Example: O(n?) Boolean variables or O(n) finite-domain variables
with domain size O(n) suffice for blocks world with n blocks.

Finite-Domain Representation Eqm 1\ ence and Normal Forms Summary

00@000000000000

Blocks World State with Propositional Variables

s(A-on-B) =
s(A-on-C) =
s(A-on-table) =
s(B-on-A)
s(B-on-C)

~s 29 = 512 states)

Note: it may be useful to add auxiliary state variables like A-clear.

Finite-Domain Representation lence and Normal Forms
000@00000000000

Blocks World State with Finite-Domain Variables

Use three finite-domain state variables:
m below-a: {b,c,table}
m below-b: {a,c,table}
m below-c: {a,b,table}

s(below-a) = table
s(below-b) = a

s(below-c) = table

~ 33 = 27 states

V.

Note: it may be useful to add auxiliary state variables like above-a.

Finite-Domain Representation = ence and Normal Forms

0O000@0000000000

Advantage of Finite-Domain Representation

How many “useless” (physically impossible) states are there
with these blocks world state representations?
m There are 13 physically possible states with three blocks:

m all blocks on table: 1 state
m all blocks in one stack: 3! = 6 states
m two block stacked, the other separate: (3)2! =6

m With propositional variables, 2° — 13 = 499 states are useless.
m With finite-domain variables, only 27 — 13 = 14 are useless.

Although useless states are unreachable,
they can introduce “shortcuts” in some heuristics
and thus lead to worse heuristic estimates.

Finite-Domain Representation ence and Normal Forms

00000e000000000

Finite-Domain State Variables

Definition (Finite-Domain State Variable)

A finite-domain state variable is a symbol v with an associated
domain dom(v), which is a finite non-empty set of values.

Let V be a finite set of finite-domain state variables.

A state s over V' is an assignment s : V — J,\ dom(v)
such that s(v) € dom(v) for all v € V.

A formula over V is a propositional logic formula whose atomic
propositions are of the form v = d where v € V and d € dom(v).
v

Slightly extending propositional logic, we treat states s
over finite-domain variables as logical interpretations
where s |= v = d iff s(v) = d.

Finite-Domain Representation =q lence and Normal Forms

0000008000000 00

Example: Finite-Domain State Variables

Consider finite-domain variables /' = {/ocation, bike} with
dom(/location) = {at-home, in-front-of-uni, in-lecture} and
dom(bike) = {locked, unlocked, stolen}.

Consider state s = {/ocation — at-home, bike — locked}.

Does s |= (location = at-home A —bike = stolen) hold?

Finite-Domain Representation ence and Normal Forms

0000000 e0000000

Reminder: Syntax of Operators

Definition (Operator)

An operator o over state variables V' is an object
with three properties:

m a precondition pre(o), a formula over V

m an effect effo) over V

m a cost cost(o) € R{

Only necessary adaptation: What is an effect?

(location = in-front-of-uni,
location := in-lecture A (bike = unlocked > bike := stolen), 1)

Finite-Domain Representation ence and Normal Forms

0O0000000e000000

Syntax of Effects

Definition (Effect over Finite-Domain State Variables)

Effects over finite-domain state variables V
are inductively defined as follows:

m T is an effect (empty effect).

m If v € V is a finite-domain state variable and d € dom(v),
then v := d is an effect (atomic effect).

m If e and € are effects, then (e A €') is an effect
(conjunctive effect).

m If x is a formula over V and e is an effect,
then (x > e) is an effect (conditional effect).

Parentheses can be omitted when this does not cause ambiguity.

only change compared to propositional case: atomic effects

Summary

Finite-Domain Representation
000000000e00000

Semantics of Effects: Effect Conditions

Definition (Effect Condition with Finite-Domain Representation)

Let v := d be an atomic effect, and let e be an effect.

The effect condition effcond(v := d, e) under which v := d triggers
given the effect e is a propositional formula defined as follows:

m effcond(v :=d, T) =1
m effcond(v :=d,v:=d)=T
m effcond(v :=d,v :=d')= L
for atomic effects with v/ # v or d' # d
m effcond(v :=d,(e N€')) =
(effcond(v := d, €) V effcond(v := d, €'))
m effcond(v := d,(x > e)) = (x A effcond(v := d, €))

Same definition as for propositional tasks,
we just use the adapted definition of atomic effects.

Finite-Domain Representation =q lence and Normal Forms

000000000 0e0000

Conflicting Effects and Consistency Condition

m What should an effect of the form v:=a A v:= b mean?

m For finite-domain representations, the accepted semantics
is to make this illegal, i.e., to make an operator inapplicable
if it would lead to conflicting effects.

Definition (Consistency Condition)

Let e be an effect over finite-domain state variables V.

The consistency condition for e, consist(e) is defined as

/\ /\ —(effcond(v := d, e) A effcond(v := d’, €)).
veV d,d’edom(v),d#d’

How did we handle conflicting effects
in propositional planning tasks?

Finite-Domain Representation valence and Normal Forms

00000000000 e000

Summary

Semantics of Operators: Finite-Domain Case

Definition (Applicable, Resulting State)

Let V be a set of finite-domain state variables

and e be an effect over V.

If s |= consist(e), the resulting state of applying e in s,
written s[e], is the state s’ defined as follows for all v € V:

S(v) = {d if s |= effcond(v := d, e) for some d € dom(v)

s(v) otherwise

Let o be an operator over V.

Operator o is applicable in s if s |= pre(o) A consist(eff0)).
If o is applicable in s, the resulting state of applying o in s,
written s[o], is the state s[eff{0)].

Finite-Domain Representation ence and Normal Forms
000000000000e00

Applying Operators: Example

V' = {location, bike} with
dom(location) = {at-home, in-front-of-uni, in-lecture} and
dom(bike) = {locked, unlocked, stolen}.

State s = {/ocation — in-front-of-uni, bike — unlocked}

o = (location = in-front-of-uni, location := at-home, 1)

o' = (location = in-front-of-uni,
location := in-lecture A (bike = unlocked > bike := stolen), 1)

What is s[o]]? What is s[o’]?)

Finite-Domain Representation ence and Normal Forms

0000000000000 e0

FDR Planning Tasks

Definition (Planning Task)

An FDR planning task (or planning task in finite-domain
representation) is a 4-tuple M1 = (V,/, O,~) where

m V is a finite set of finite-domain state variables,
I is an assignment for V called the initial state,

| |
m O is a finite set of operators over V/, and
| |

v is a formula over V called the goal.

Apart from the variables, this is the same definition
as for propositional planning tasks,
but the underlying concepts have been adapted.

Finite-Domain Representation Summary

0000000000000 0e

Mapping FDR Planning Tasks to Transition Systems

Definition (Transition System Induced by an FDR Planning Task)

The FDR planning task M = (V. /1, O,) induces
the transition system 7 (1) = (S, L, c, T, sp, Si), where

m S is the set of all states over V,

m L is the set of operators O,

c(0) = cost(o) for all operators o € O,

T ={(s,0,5') | s€ S, o applicable in s, s’ = s[o]},
so =/, and

S,={seS|skEn}

Exactly the same definition as for propositional planning tasks,
but the underlying concepts have been adapted.

@00000

Equivalence and Normal Forms

sentation Equivalence and Normal Forms

Summar

O®@0000

Equivalence and Flat Operators

m The definitions of equivalent effects/operators
and flat effects/operators apply equally to finite-domain
representation.

m The same is true for the equivalence transformations.

You find the definitions and transformations in Chapter B4.

Equivalence and Normal Forms Summary
00000 00

Conflict-Free Operators

Definition (Conflict-Free)

An effect e over finite-domain state variables V
is called conflict-free if effcond(v := d, e) A effcond(v := d’, e)
is unsatisfiable for all v € V and d,d’ € dom(v) with d # d'.

An operator o is called conflict-free if eff{0) is conflict-free.

Note: consist(e) = T for conflict-free e.

Algorithm to make given operator o conflict-free:
m replace pre(o) with pre(o) A consist(eff{ o))
m replace all atomic effects v := d by (consist(eff0)) > v := d)

The resulting operator o’ is conflict-free and 0 = 0'.

epresentation Equivalence and Normal Forms Summary
000800 00

SAS™ Operators and Planning Tasks

Definition (SAS™ Operator)
An operator o of an FDR planning task is a SAS™ operator if

m pre(o) is a satisfiable conjunction of atoms, and

m eff{0) is a conflict-free conjunction of atomic effects.

Definition (SAS™ Planning Task)

An FDR planning task (V, O, /,v) is a SAS™ planning task
if all operators o € O are SAS™ operators
and « is a satisfiable conjunction of atoms.

Note: SAS™ operators are conflict-free and flat.

sentation Equivalence and Normal Forms Summar

SAS™ Operators: Remarks

m Every SAS™ operator is of the form
(i=dit A Avy=dp, Vi:=diA---Av,,:=d)

where all v; are distinct and all va are distinct.

m Often, SAS™ operators o are described
via two sets of partial assignments:
m the preconditions {vy — di,...,v, — d,}
m the effects {v{ — dyi,..., v, — d.}

Finite-Domain atio Equivalence and Normal Forms

00000 0 00000e

SAS™ vs. STRIPS

m SAST is an analogue of STRIPS planning tasks for FDR,
but there is no special role of “positive” conditions.

m Apart from this difference, all comments for STRIPS
apply analogously.

m If all variable domains are binary, SAS™ is essentially
STRIPS with negation.

Derives from SAS = Simplified Action Structures
(Backstrom & Klein, 1991)

Summarn
0

Summary

sentation nce and Normal Forms Summary
0 00) o

Summary

m Planning tasks in finite-domain representation (FDR)
are an alternative to propositional planning tasks.

m FDR tasks are often more compact (have fewer states).
m This makes many planning algorithms more efficient
when working with a finite-domain representation.

m SAS™ tasks are a restricted form of FDR tasks
where only conjunctions of atoms are allowed
in the preconditions, effects and goal.

No conditional effects are allowed.

	Finite-Domain Representation
	

	Equivalence and Normal Forms
	

	Summary
	

