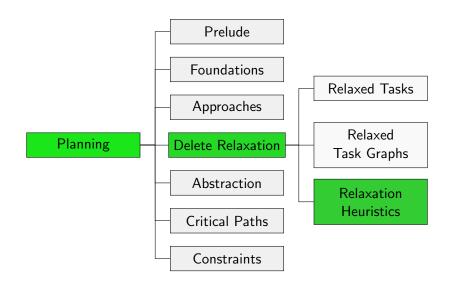
Planning and Optimization D7. Delete Relaxation: Analysis of h^{max} and h^{add}

Malte Helmert and Gabriele Röger

Universität Basel

October 30, 2023

Content of this Course



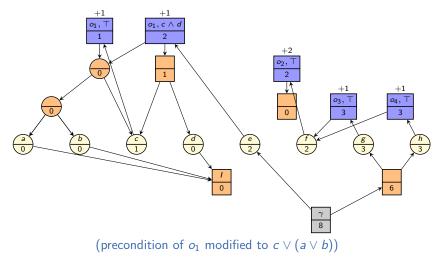
Choice Functions

Motivation

- In this chapter, we analyze the behaviour of h^{max} and h^{add} more deeply.
- Our goal is to understand their shortcomings.
 - In the next chapter we then used this understanding to devise an improved heuristic.
- As a preparation for our analysis, we need some further definitions that concern choices in AND/OR graphs.
- The key observation is that if we want to establish the value of a certain node n, we can to some extent choose how we want to achieve the OR nodes that are relevant to achieving n.

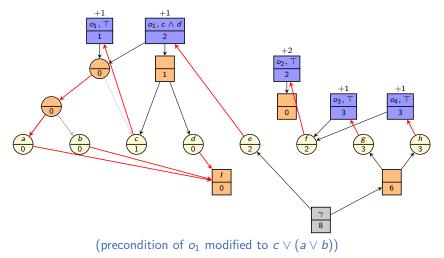
Preview: Choice Function & Best Achievers

Preserve at most one outgoing arc of each OR node, but node values may not change.



Preview: Choice Function & Best Achievers

Preserve at most one outgoing arc of each OR node, but node values may not change.



Choice Functions

Definition (Choice Function)

Let G be an AND/OR graph with nodes N and OR nodes N_{\vee} . A choice function for G is a function $f : N' \to N$ defined on some set $N' \subseteq N_{\vee}$ such that $f(n) \in succ(n)$ for all $n \in N'$.

- In words, choice functions select (at most) one successor for each OR node of G.
- Intuitively, f(n) selects by which disjunct n is achieved.
- If f(n) is undefined for a given n, the intuition is that n is not achieved.

Reduced Graphs

Once we have decided how to achieve an OR node, we can remove the other alternatives:

Definition (Reduced Graph)

Let G be an AND/OR graph, and let f be a choice function for G defined on nodes N'.

The reduced graph for f is the subgraph of Gwhere all outgoing arcs of OR nodes are removed except for the chosen arcs $\langle n, f(n) \rangle$ with $n \in N'$.

Best Achievers

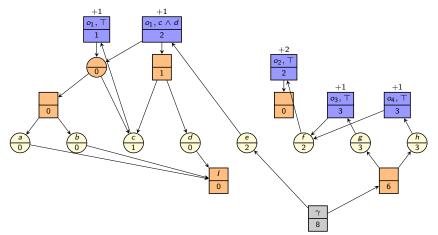
Choice Functions Induced by h^{max} and h^{add}

Which choices do h^{\max} and h^{add} make?

- At every OR node n, we set the cost of n to the minimum of the costs of the successors of n.
- The motivation for this is to achieve n via the successor that can be achieved most cheaply according to our cost estimates.
- →→ This corresponds to defining a choice function fwith $f(n) \in \arg \min_{n' \in N'} n'.cost$ for all reached OR nodes n, where $N' \subseteq succ(n)$ are all successors of n processed before n.
 - The successors chosen by this cost function are called best achievers (according to h^{max} or h^{add}).
 - Note that the best achiever function f is in general not well-defined because there can be multiple minimizers. We assume that ties are broken arbitrarily.

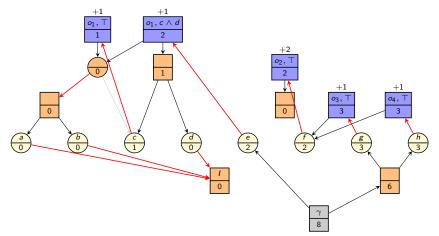
Example: Best Achievers (1)

best achievers for h^{add}



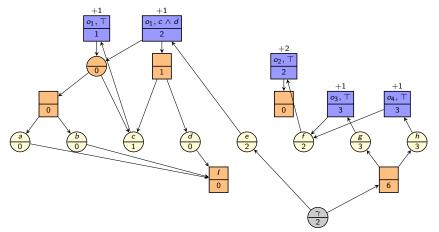
Example: Best Achievers (1)

best achievers for h^{add}



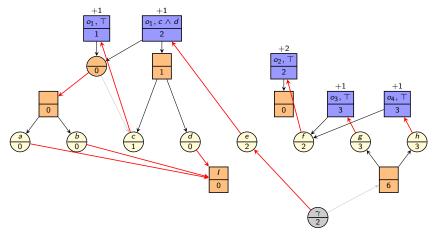
Example: Best Achievers (2)

best achievers for h^{add} ; modified goal $e \lor (g \land h)$



Example: Best Achievers (2)

best achievers for h^{add} ; modified goal $e \lor (g \land h)$



Best Achiever Graphs

- Observation: The h^{max}/h^{add} costs of nodes remain the same if we replace the RTG by the reduced graph for the respective best achiever function.
- The AND/OR graph that is obtained by removing all nodes with infinite cost from this reduced graph is called the best achiever graph for h^{max}/h^{add}.
 - We write G^{max} and G^{add} for the best achiever graphs.
- G^{max} (G^{add}) is always acyclic: for all arcs ⟨n, n'⟩ it contains, n is processed by h^{max} (by h^{add}) after n'.

Paths in Best Achiever Graphs

Let n be a node of the best achiever graph.

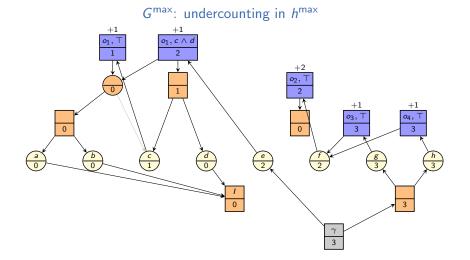
Let N_{eff} be the set of effect nodes of the best achiever graph. The cost of an effect node is the cost of the associated operator. The cost of a path in the best achiever graph is the sum of costs of all effect nodes on the path.

The following properties can be shown by induction:

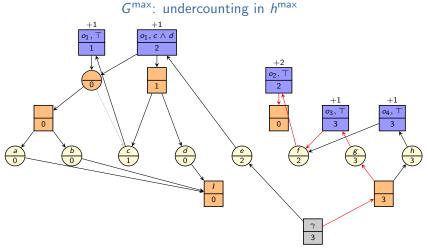
- h^{max}(n) is the maximum cost of all paths originating from n in G^{max}. A path achieving this maximum is called a critical path.
- h^{add}(n) is the sum, over all effect nodes n', of the cost of n' multiplied by the number of paths from n to n' in G^{add}.

In particular, these properties hold for the goal node n_{γ} if it is reachable.

Example: Undercounting in h^{\max}

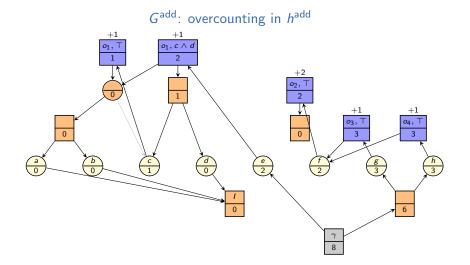


Example: Undercounting in h^{\max}

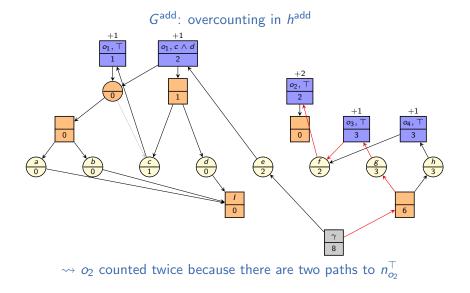


 \rightsquigarrow o_1 and o_4 not counted because they are off the critical path

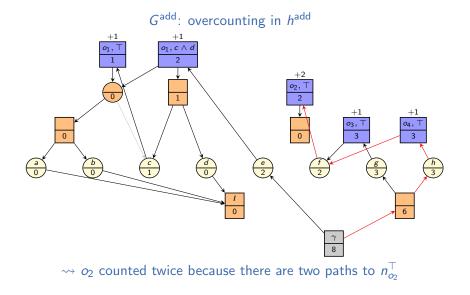
Example: Overcounting in h^{add}



Example: Overcounting in h^{add}



Example: Overcounting in h^{add}



Summary

Summary

- h^{max} and h^{add} can be used to decide how to achieve OR nodes in a relaxed task graph
 best achievers
- Best achiever graphs help identify shortcomings of h^{max} and h^{add} compared to the perfect delete relaxation heuristic h^+ .
 - h^{max} underestimates h⁺ because it only considers the cost of a critical path for the relaxed planning task.
 - h^{add} overestimates h⁺ because it double-counts operators occurring on multiple paths in the best achiever graph.