Planning and Optimization
D7. Delete Relaxation: Analysis of $h^{\text {max }}$ and $h^{\text {add }}$

Malte Helmert and Gabriele Röger
Universität Basel
October 30, 2023
M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Planning and Optimization
October 30, 2023 - D7. Delete Relaxation: Analysis of $h^{\max }$ and $h^{\text {add }}$

D7.1 Choice Functions

D7.2 Best Achievers

D7.3 Summary

- In this chapter, we analyze the behaviour of $h^{\text {max }}$ and $h^{\text {add }}$ more deeply.
- Our goal is to understand their shortcomings.
- In the next chapter we then used this understanding to devise an improved heuristic.
- As a preparation for our analysis, we need some further definitions that concern choices in AND/OR graphs.
- The key observation is that if we want to establish the value of a certain node n, we can to some extent choose how we want to achieve the OR nodes that are relevant to achieving n.
D7. Delete Relaxation: Analysis of $h^{\max }$ and $h^{\text {add }}$ Choice Functions

Choice Functions

Definition (Choice Function)

Let G be an AND/OR graph with nodes N and OR nodes N_{V}.
A choice function for G is a function $f: N^{\prime} \rightarrow N$ defined on some set $N^{\prime} \subseteq N_{V}$ such that $f(n) \in \operatorname{succ}(n)$ for all $n \in N^{\prime}$.

- In words, choice functions select (at most) one successor for each OR node of G.
- Intuitively, $f(n)$ selects by which disjunct n is achieved.
- If $f(n)$ is undefined for a given n, the intuition is that n is not achieved.

D7. Delete Relaxation: Analysis of $h^{\max }$ and $h^{\text {add }}$

Preserve at most one outgoing arc of each OR node, but node values may not change.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization

October 30, 2023

Reduced Graphs

Once we have decided how to achieve an OR node, we can remove the other alternatives:

Definition (Reduced Graph)

Let G be an AND/OR graph, and let f be a choice function for G defined on nodes N^{\prime}.
The reduced graph for f is the subgraph of G where all outgoing arcs of OR nodes are removed except for the chosen arcs $\langle n, f(n)\rangle$ with $n \in N^{\prime}$.

D7.2 Best Achievers

Choice Functions Induced by $h^{\text {max }}$ and $h^{\text {add }}$

Which choices do $h^{\text {max }}$ and $h^{\text {add }}$ make?

- At every OR node n, we set the cost of n to the minimum of the costs of the successors of n.
- The motivation for this is to achieve n via the successor that can be achieved most cheaply according to our cost estimates.
\rightsquigarrow This corresponds to defining a choice function f with $f(n) \in \arg \min _{n^{\prime} \in N^{\prime}} n^{\prime}$. cost for all reached OR nodes n, where $N^{\prime} \subseteq \operatorname{succ}(n)$ are all successors of n processed before n.
- The successors chosen by this cost function are called best achievers (according to $h^{\text {max }}$ or $h^{\text {add }}$).
- Note that the best achiever function f is in general not well-defined because there can be multiple minimizers. We assume that ties are broken arbitrarily.
M. Helmert. G. Röger (Universität Basel)

Planning and Optimization
October 30, 2023

Paths in Best Achiever Graphs

Let n be a node of the best achiever graph.
Let $N_{\text {eff }}$ be the set of effect nodes of the best achiever graph.
The cost of an effect node is the cost of the associated operator.
The cost of a path in the best achiever graph is the sum of costs of all effect nodes on the path.

The following properties can be shown by induction:

- $h^{\max }(n)$ is the maximum cost of all paths originating from n in $G^{\text {max }}$. A path achieving this maximum is called a critical path.
- $h^{\text {add }}(n)$ is the sum, over all effect nodes n^{\prime}, of the cost of n^{\prime} multiplied by the number of paths from n to n^{\prime} in $G^{\text {add }}$.
In particular, these properties hold for the goal node n_{γ} if it is reachable.

Planning and Optimization

Example: Undercounting in $h^{\text {max }}$

$$
G^{\max }: \text { undercounting in } h^{\max }
$$

$\rightsquigarrow O_{1}$ and O_{4} not counted because they are off the critical path

Example: Overcounting in $h^{\text {add }}$
$G^{\text {add }}$: overcounting in $h^{\text {add }}$

$\rightsquigarrow O_{2}$ counted twice because there are two paths to $n_{O_{2}}^{\top}$

