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Using Relaxations in Practice

How can we use relaxations for heuristic planning in practice?

Different possibilities:

m Implement an optimal planner for relaxed planning tasks
and use its solution costs as estimates, even though
optimal relaxed planning is NP-hard.
~+ h* heuristic

m Do not actually solve the relaxed planning task,
but compute an approximation of its solution cost.
~s hM heyristic, h?99 heuristic, A-M-cUt heuristic

m Compute a solution for relaxed planning tasks
which is not necessarily optimal, but “reasonable”.
~~ hFF heuristic
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AND/OR Graphs: Motivation

m Most relaxation heuristics we will consider can be understood
in terms of computations on graphical structures called
AND/OR graphs.

m We now introduce AND/OR graphs and study
some of their major properties.

m In the next chapter, we will relate AND/OR graphs
to relaxed planning tasks.
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AND/OR Graph Example
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AND/OR Graphs

Definition (AND/OR Graph)
An AND/OR graph (N, A, type) is a directed graph (N, A) with
a node label function type: N — {A,V} partitioning nodes into
m AND nodes (type(v) = A) and
m OR nodes (type(v) = V).
We write succ(n) for the successors of node n € N, i.e.,
succ(n) ={n" € N | (n,n’) € A}.

Note: We draw AND nodes as squares and OR nodes as circles.
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AND/OR Graph Valuations

Definition (Consistent Valuations of AND/OR Graphs)

Let G be an AND/OR graph with nodes N.

A valuation or truth assignment of G is an interpretation
a: N — {T,F}, treating the nodes as propositional variables.

We say that « is consistent if
m for all AND nodes n € N: a = niff o = A\ yegye(n) 1
m forall OR nodes n€ N: a = niff a =V egueem M-

Note that A, cpn' =T and \/,,cpn' = L.
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Example: A Consistent Valuation
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Example: Another Consistent Valuation
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Example: An Inconsistent Valuation
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Example: An Inconsistent Valuation
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How Do We Find Consistent Valuations?

If we want to use valuations of AND/OR graphs algorithmically,
a number of questions arise:

m Do consistent valuations exist for every AND/OR graph?
m Are they unique?
m If not, how are different consistent valuations related?

m Can consistent valuations be computed efficiently?

Our example shows that the answer to the second question is “no"”.
In the rest of this chapter, we address the remaining questions.
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Forced Nodes
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Forced Nodes

Definition (Forced True/False Nodes)
Let G be an AND/OR graph.

A node n of G is called forced true
if a(n) =T for all consistent valuations a of G.

A node n of G is called forced false
if a(n) = F for all consistent valuations « of G.

How can we efficiently determine that nodes are forced true/false?

~> We begin by looking at some simple rules.
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Rules for Forced True Nodes

Proposition (Rules for Forced True Nodes)
Let n be a node in an AND/OR graph.

Rule T-(A): If nis an AND node and all
of its successors are forced true, then n is forced true.

Rule T-(\V): If n is an OR node and at least one
of its successors is forced true, then n is forced true.
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Rules for Forced False Nodes

Proposition (Rules for Forced False Nodes)
Let n be a node in an AND/OR graph.

Rule F-(A): If n is an AND node and at least one
of its successors is forced false, then n is forced false.

Rule F-(\V): If n is an OR node and all
of its successors are forced false, then n is forced false.
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Example: Applying the Rules for Forced Nodes
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Example: Applying the Rules for Forced Nodes
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Example: Applying the Rules for Forced Nodes
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Example: Applying the Rules for Forced Nodes
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Example: Applying the Rules for Forced Nodes
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Example: Applying the Rules for Forced Nodes
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Completeness of Rules for Forced Nodes

If n is a node in an AND/OR graph that is forced true,
then this can be derived by a sequence of applications
of Rule T-(A) and Rule T-(V).

.

If n is a node in an AND/OR graph that is forced false,
then this can be derived by a sequence of applications
of Rule F-(\) and Rule F-(V).

.

We prove the result for forced true nodes.
The result for forced false nodes can be proved analogously.
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Completeness of Rules for Forced Nodes: Proof (1)

m Let « be a valuation where a(n) = T iff there exists
a sequence p, of applications of Rules T-(A)
and Rule T-(V) that derives that n is forced true.

m Because the rules are monotonic, there exists a sequence p
of rule applications that derives that n is forced true
for all n € on(a). (Just concatenate all p, to form p.)

m By the correctness of the rules, we know that all nodes
reached by p are forced true. It remains to show
that none of the nodes not reached by p is forced true.

m We prove this by showing that « is consistent,
and hence no nodes with «(n) = F can be forced true.
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Completeness of Rules for Forced Nodes: Proof (2)

Proof (continued).
Case 1: nodes n with a(n) =T

m In this case, p must have reached n in one of
the derivation steps. Consider this derivation step.

m If nis an AND node, p must have reached
all successors of n in previous steps,
and hence a(n’) = T for all successors n'.

m If nis an OR node, p must have reached
at least one successor of n in a previous step,
and hence a(n") = T for at least one successor n'.

m In both cases, o is consistent for node n.
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Completeness of Rules for Forced Nodes: Proof (3)

Proof (continued).

Case 2: nodes n with a(n) = F

m In this case, by definition of a no sequence of derivation steps
reaches n. In particular, p does not reach n.

m If nis an AND node, there must exist
some n’ € succ(n) which p does not reach.
Otherwise, p could be extended using Rule T-(A) to reach n.
Hence, a(n’) = F for some n’ € succ(n).

m If nis an OR node, there cannot exist
any n’ € succ(n) which p reaches.
Otherwise, p could be extended using Rule T-(V) to reach n.
Hence, a(n") = F for all n’ € succ(n).

m In both cases, « is consistent for node n.
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Remarks on Forced Nodes

Notes:

m The theorem shows that we can compute all forced nodes
by applying the rules repeatedly until a fixed point is reached.

m In particular, this also shows that the order of rule application
does not matter: we always end up with the same result.

m In an efficient implementation, the sets of forced nodes can be
computed in linear time in the size of the AND/OR graph.

m The proof of the theorem also shows that every

AND/OR graph has a consistent valuation,
as we explicitly construct one in the proof.
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Most and Least Conservative Valuation

Definition (Most and Least Conservative Valuation)

Let G be an AND/OR graph with nodes N.

The most conservative valuation amcv :N — {T,F} and
the least conservative valuation af : N — {T,F}

of G are defined as:

c (n) T if nis forced true
n) =
mev F otherwise

G
Aley

T otherwise

F if nis forced false
(n) =

Note: a$,, is the valuation constructed in the previous proof.
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Properties of Most/Least Conservative Valuations

Theorem (Properties of Most/Least Conservative Valuations)
Let G be an AND/OR graph. Then:

G . .
Q o, is consistent.

Q agv is consistent.

© For all consistent valuations o of G,
on(ahe,) C on(a) C on(ad,).
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Properties of MCV/LCV: Proof

Part 1. was shown in the preceding proof. We showed that
the valuation « considered in this proof is consistent
and satisfies «(n) = T iff n is forced true, which implies o = «

The proof of Part 2. is analogous, using the rules
for forced false nodes instead of forced true nodes.

Part 3 follows directly from the definitions
of forced nodes, a$, and aS,.

G

mcv*
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Properties of MCV /LCV: Consequences

This theorem answers our remaining questions about the existence,
uniqueness, structure and computation of consistent valuations:

m Consistent valuations always exist
and can be efficiently computed.

m All consistent valuations lie between

the most and least conservative one.

m There is a unique consistent valuation iff oS, = oS,

or equivalently iff each node is forced true or forced false.
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Summary

m AND/OR graphs are directed graphs
with AND nodes and OR nodes.

m We can assign truth values to AND/OR graph nodes.

m Such valuations are called consistent if they match
the intuitive meaning of "AND"” and “OR".

m Consistent valuations always exist.

m Consistent valuations can be computed efficiently.

All consistent valuations fall between two extremes:

m the most conservative valuation, where only nodes
that are forced to be true are true

m the least conservative valuation, where all nodes
that are not forced to be false are true
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